

Palm OS

®

 Protein C/C++
Compiler Language &
Library Reference

Palm OS

®

 Developer Suite

CONTRIBUTORS

Written by Denise Stone.
Engineering contributions by Kenneth Albanowski, Matt Fassiotto, Ken Krugler, Kevin MacDonell,
Vivek Magotra, Justin Morey, Jason Parks, Flash Sheridan, Phil Shoemaker, and Chris Tate.

Copyright © 2004, PalmSource, Inc. and its affiliates. All rights reserved. This technical documentation contains
confidential and proprietary information of PalmSource, Inc. (“PalmSource”), and is provided to the licensee (“you”)
under the terms of a Nondisclosure Agreement, Product Development Kit license, Software Development Kit license
or similar agreement between you and PalmSource. You must use commercially reasonable efforts to maintain the
confidentiality of this technical documentation. You may print and copy this technical documentation solely for the
permitted uses specified in your agreement with PalmSource. In addition, you may make up to two (2) copies of this
technical documentation for archival and backup purposes. All copies of this technical documentation remain the
property of PalmSource, and you agree to return or destroy them at PalmSource’s written request. Except for the
foregoing or as authorized in your agreement with PalmSource, you may not copy or distribute any part of this
technical documentation in any form or by any means without express written consent from PalmSource, Inc., and
you may not modify this technical documentation or make any derivative work of it (such as a translation,
localization, transformation or adaptation) without express written consent from PalmSource.

PalmSource, Inc. reserves the right to revise this technical documentation from time to time, and is not obligated to
notify you of any revisions.

THIS TECHNICAL DOCUMENTATION IS PROVIDED ON AN “AS IS” BASIS. NEITHER PALMSOURCE NOR ITS
SUPPLIERS MAKES, AND EACH OF THEM EXPRESSLY EXCLUDES AND DISCLAIMS TO THE FULL EXTENT
ALLOWED BY APPLICABLE LAW, ANY REPRESENTATIONS OR WARRANTIES REGARDING THIS TECHNICAL
DOCUMENTATION, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING WITHOUT LIMITATION
ANY WARRANTIES IMPLIED BY ANY COURSE OF DEALING OR COURSE OF PERFORMANCE AND ANY
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT,
ACCURACY, AND SATISFACTORY QUALITY. PALMSOURCE AND ITS SUPPLIERS MAKE NO
REPRESENTATIONS OR WARRANTIES THAT THIS TECHNICAL DOCUMENTATION IS FREE OF ERRORS OR IS
SUITABLE FOR YOUR USE. TO THE FULL EXTENT ALLOWED BY APPLICABLE LAW, PALMSOURCE, INC. ALSO
EXCLUDES FOR ITSELF AND ITS SUPPLIERS ANY LIABILITY, WHETHER BASED IN CONTRACT OR TORT
(INCLUDING NEGLIGENCE), FOR DIRECT, INCIDENTAL, CONSEQUENTIAL, INDIRECT, SPECIAL,
EXEMPLARY OR PUNITIVE DAMAGES OF ANY KIND ARISING OUT OF OR IN ANY WAY RELATED TO THIS
TECHNICAL DOCUMENTATION, INCLUDING WITHOUT LIMITATION DAMAGES FOR LOST REVENUE OR
PROFITS, LOST BUSINESS, LOST GOODWILL, LOST INFORMATION OR DATA, BUSINESS INTERRUPTION,
SERVICES STOPPAGE, IMPAIRMENT OF OTHER GOODS, COSTS OF PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, OR OTHER FINANCIAL LOSS, EVEN IF PALMSOURCE, INC. OR ITS SUPPLIERS HAVE BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES OR IF SUCH DAMAGES COULD HAVE BEEN
REASONABLY FORESEEN.

PalmSource, the PalmSource logo, BeOS, Graffiti, HandFAX, HandMAIL, HandPHONE, HandSTAMP, HandWEB,
HotSync, the HotSync logo, iMessenger, MultiMail, MyPalm, Palm, the Palm logo, the Palm trade dress, Palm
Computing, Palm OS, Palm Powered, PalmConnect, PalmGear, PalmGlove, PalmModem, Palm Pack, PalmPak,
PalmPix, PalmPower, PalmPrint, Palm.Net, Palm Reader, Palm Talk, Simply Palm and ThinAir are trademarks of
PalmSource, Inc. or its affiliates. All other product and brand names may be trademarks or registered trademarks of
their respective owners.

IF THIS TECHNICAL DOCUMENTATION IS PROVIDED ON A COMPACT DISC, THE SOFTWARE AND OTHER
DOCUMENTATION ON THE COMPACT DISC ARE SUBJECT TO THE LICENSE AGREEMENTS
ACCOMPANYING THE SOFTWARE AND OTHER DOCUMENTATION.

Palm OS Protein C/C++ Compiler Language and Library Reference
Document Number 3124-001
June 29, 2004
For the latest version of this document, visit
http://www.palmos.com/dev/support/docs/

PalmSource, Inc.
1240 Crossman Avenue
Sunnyvale, CA 94089
USA
www.palmsource.com

http://www.palmos.com/dev/support/docs/
http://www.palmsource.com

Palm OS Protein C/C++ Compiler Language and Library Reference

iii

Table of Contents

About This Book vii

How This Book Is Organized vii
Palm OS Developer Suite Documentation viii
Additional Resources ix

Part I: C/C++ Compiler Language Reference

1 Language Overview 3

C Technical Requirements 4
C++ Technical Requirements 4
Limitations . 5

Restrictions on C99 5
Restrictions on C++. 5

2 Language Elements 7

Lexical Elements . 7
Character Set . 7
Comments . 8
Tokens . 9
Identifiers . . 9
Keywords . 10
Constants . 12
Operators . 12
Separators . 15

Preprocessor Directives 15
#define . 15
#pragma . 17

iv

 Palm OS Protein C/C++ Compiler Language and Library Reference

Part II: C/C++ Compiler Library Reference

3 STLport/iostream 21

4 Palm OS-Specific Libraries 23

The Palm OS Implementation of the Standard C Library (libc) . 24

5 Runtime Library Functions 25

Supported Functions 25
Unsupported Functions 31

6 assert.h 39

Functions and Macros 39

7 ctype.h 41

Functions and Macros 41

8 errno.h 49

Global Variables . 49

9 fcntl.h 51

Functions and Macros 51

10 in.h 53

Structures and Types 53
Functions and Macros 54

11 inet.h 57

Functions and Macros 57

12 ioctl.h 63

Functions and Macros 63

Palm OS Protein C/C++ Compiler Language and Library Reference

v

13 iso646.h 65

14 locale.h 67

15 math.h 69

Functions and Macros 71

16 netdb.h 109

Structures and Types 109
Functions and Macros 112

17 PalmMath.h 127

Constants . 127
Functions and Macros 129

18 select.h 131

Functions and Macros 131

19 socket.h 133

Structures and Types 133
Functions and Macros 134

20 stdarg.h 145

Functions and Macros 145

21 stddef.h 147

Functions and Macros 147

22 stdio.h 149

Functions and Macros 149

23 stdlib.h 179

Structures and Types 179
Functions and Macros 181

24 string.h 197

Functions and Macros 197

vi

 Palm OS Protein C/C++ Compiler Language and Library Reference

25 strings.h 213

Functions and Macros 213

26 time.h 217

Structures and Types 217
Functions and Macros 218

27 time.h 229

Constants . 229
Functions and Macros 229

28 uio.h 235

Structures and Types 235
Functions and Macros 235

29 unistd.h 237

Functions and Macros 237

30 wchar.h 241

Index 243

Palm OS Protein C/C++ Compiler Language and Library Reference

vii

About This Book

This book provides reference information about the C/C++
language and runtime libraries used with the Palm OS compiler
tools. The audience for this book is application developers creating
Palm OS Protein ARM-native applications and shared libraries
using either the C or C++ programming languages for ARM-based
handheld devices.

How This Book Is Organized

This book is divided into two parts, a language reference and a
library reference.

Part I, “C/C++ Compiler Language Reference,” has the following
organization:

• Chapter 1, “Language Overview,” on page 3 describes the
technical requirements, language extensions, and limitations
of the Palm OS compiler.

• Chapter 2, “Language Elements,” on page 7 describes the
Palm OS compiler’s C/C++ language differences, as
compared to the ANSI standard.

Part II, “C/C++ Compiler Library Reference,” has the following
organization:

• Chapter 3, “STLport/iostream,” on page 21 describes the
STLport implementation of the C++ standard template
library.

• Chapter 4, “Palm OS-Specific Libraries,” on page 23
describes general library information.

• Chapter 5, “Runtime Library Functions,” on page 25
describes the supported and unsupported runtime functions.

• The chapters that follow, beginning with Chapter 6,
“assert.h,” on page 39 each describe a specific header file and
the supported structures, runtime functions, and macros
defined within that header file.

About This Book

Palm OS Developer Suite Documentation

viii

 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Developer Suite Documentation

The following tools books are part of the Palm OS Developer Suite:

Document Description

Introduction to Palm OS Developer Suite

Provides an overview of all of the Palm
OS development tools:

• compiler tools

• resource tools

• testing and debugging tools

Palm OS Protein C/C++ Compiler Tools
Guide

Describes how to use the Palm OS
compiler tools:

• pacc – compiler

• paasm – assembler

• palink – linker

• palib – librarian

• PSLib – the Palm OS shared library
tool, including information about
shared library definition (SLD)
files

• PElf2Bin – Palm OS post linker

• ElfDump – diagnostic tool

Palm OS Resource Tools Guide

 Describes how to use the Palm OS
resource tools:

• GenerateXRD – migration tool

• Palm OS Resource Editor – XRD
editor

• PalmRC – building tool

• PRCMerge – building tool

• PRCCompare – comparison tool

• hOverlay – localization tool

• PRCSign and PRCCert – code-
signing tools

About This Book

Additional Resources

Palm OS Protein C/C++ Compiler Language and Library Reference

ix

Additional Resources

• Documentation

PalmSource publishes its latest versions of this and other
documents for Palm OS developers at

http://www.palmos.com/dev/support/docs/

• Training

PalmSource and its partners host training classes for Palm OS
developers. For topics and schedules, check

http://www.palmos.com/dev/training

• Knowledge Base

The Knowledge Base is a fast, web-based database of
technical information. Search for frequently asked questions
(FAQs), sample code, white papers, and development
documentation at

http://www.palmos.com/dev/support/kb/

Palm OS Debugger Guide

 Describes how to use the Palm OS
Debugger.

Palm OS Resource File Formats

 Describes the XML formats used for XML
resource definition (XRD) files. XRD files
are used to define Palm OS resources and
are the input files for the Palm OS
resource tools.

Palm OS Cobalt Simulator Guide

 Describes how to use the Palm OS Cobalt
Simulator.

Palm OS Virtual Phone Guide

 Describes how to use Virtual Phone.

Document Description

http://www.palmos.com/dev/support/docs/
http://www.palmos.com/dev/training
http://www.palmos.com/dev/support/kb/

About This Book

Additional Resources

x

 Palm OS Protein C/C++ Compiler Language and Library Reference

Part I
C/C++ Compiler
Language
Reference

This part is organized into the following chapters:

Language Overview 3

Language Elements 7

Palm OS Protein C/C++ Compiler Language and Library Reference

3

1

Language Overview

The Palm OS Protein C/C++ Compiler is a full-featured, standards-
based, optimizing C/C++ compiler.

• The Palm OS compiler supports the C language standard
ANSI/ISO/IEC 9899:1999, commonly known as C99, as a
freestanding implementation. The compiler uses this
language by default for C code.

It is required that you understand both the ANSI/ISO
standard C language and library. The ANSI/ISO 9899:1999 C
standards document completely describes the standard C
library functions, as do several widely-used references
including:

–

The C Programming Language

, Second Edition, by Brian W.
Kernighan and Dennis M. Ritchie, Prentice Hall, Inc.,
1988, ISBN 0-13-1103628.

–

C: A Reference Manual

, Fifth Edition, by Samuel P.
Harbison, Prentice Hall, Inc., 2002, ISBN 0-13-089592.

– Online at www.dinkumware.com/refxc.html.

• The Palm OS compiler supports the C++ language standard
ANSI/ISO/IEC 14882:1998(E). The C++ language standard is
also documented in other widely-used references including

The C++ Programming Language

, Third Edition, by Bjarne
Stroustrup, Addison-Wesley, 2000, ISBN 0-20-1700735.

The Palm OS compiler takes as input one or more C and/or C++
language text files (written according to the standards above) and
produces a corresponding number of assembly language source
files (see the

Palm OS Protein C/C++ Compiler Tools Guide

 for more
details).

Language Overview

C Technical Requirements

4

 Palm OS Protein C/C++ Compiler Language and Library Reference

C Technical Requirements

In addition to the ANSI/ISO/IEC requirements previously
mentioned, the C facilities of the Palm OS compiler meet the
following additional technical requirements:

• Supports a variety of useful extensions to the base language,
particularly those useful to the ARM architecture.

• Supports compiling with extensions removed that are
incompatible with the appropriate ANSI specification.

• Produces code for the ARM instruction set for version 4T
architecture microprocessors as defined in the

ARM Reference
Manual

, revision E.

• Adheres to the C calling conventions of the base standard
ABI for the ARM architecture.

• Adheres to the shared library conventions documented in the

ARM-Thumb Shared Library Architecture

 (ASHLA, document
number MADEIRA-0020-CUST-DDES A-01).

• Produces DWARF version 1.1 debugging information, if
debugging output is requested.

C++ Technical Requirements

In addition to the ANSI/ISO/IEC requirements previously
mentioned, the C++ facilities of the Palm OS compiler meet the
following additional technical requirements:

• Adheres to the C++ calling conventions of the base standard
ABI for the ARM architecture.

Language Overview

Limitations

Palm OS Protein C/C++ Compiler Language and Library Reference

5

Limitations

There are restrictions on some of the newer, more complex, and more
exotic features of the relevant standards.

Restrictions on C99

The C99 implementation is limited is the following ways:

• Complex arithmetic is not supported, and thus all usages of the

_Complex

 or

_Imaginary

 types are unsupported. This includes:

– float _Complex

– double _Complex

– long double _Complex

– float _Imaginary

– double _Imaginary

– long double _Imaginary

• Avoid use of the

long double

 type in the Simulator environment.
It is unsupported and should not be used. There is a binary
compatibility problem with i386 gcc and the compiler used to build
the Simulator.

• Floating-point environment control is not available, therefore the

__STDC_IEC_559__

 and

__STDC_IEC_559_COMPLEX__

 macros
are not defined.

• Variable length arrays are available, however during debugging,
the array length may

not

 be available. The allocation of local VLAs
is implemented via calls to

malloc()

 and

free()

.

Restrictions on C++

The C++ implementation is limited is the following way:

• Exported templates are not supported.

Language Overview

Limitations

6

 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference

7

2

Language Elements

This chapter describes the Palm OS compiler’s C/C++ language
differences, as compared to the ANSI standard. The following
language elements of C and C++ are described:

• Lexical Elements

• Preprocessor Directives

Lexical Elements

This section describes the following lexical elements of C and C++:

• Character Set

• Comments

• Tokens

• Identifiers

• Keywords

• Constants

• Operators

• Separators

Character Set

The Palm OS compiler only specifically supports the ASCII
character set for input, although the compiler is intended to be 8-bit
neutral. The following lists the basic character set that is available at
both compile and run time:

• The uppercase and lowercase letters of the English alphabet

a b c d e f g h i j k l m n o p q r s t u v w x y z

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

• The decimal digits 0 through 9

0 1 2 3 4 5 6 7 8 9

Language Elements

Lexical Elements

8

 Palm OS Protein C/C++ Compiler Language and Library Reference

• The following graphic characters:

! " # % & ' () * + , - . / : ; < > ? [\] _
{ } ˜

• The caret (

^

) character

• The split vertical bar (

|

) character

• The space character (' ')

• The control characters representing newline, horizontal tab,
vertical tab, and form feed, and end of string (terminating
null character).

The number sign (

#

) character is used for preprocessing only, and
the underscore (

_

) character is treated as a normal letter.

Comments

The following comments within C/C++ source code are permitted:

• The

/* (slash, asterisk) characters, followed by any sequence
of characters (including newlines), followed by the
*/ (asterisk, slash) characters.

• The // (two slashes) characters followed by any sequence of
characters. A newline not immediately preceded by a line-
continuation (\) character terminates this form of comment.
This kind of comment is commonly called a single-line
comment.

You can put comments anywhere the language allows white space.

The Palm OS compiler also recognizes the following comments
within C/C++ source code, used to affect warning messages
generated by the compiler:

/*ARGSUSED*/
When placed before a function definition, this comment
suppresses compiler warnings about unused parameters in
functions.

/*NOTREACHED*/
When inserted at the beginning of a block of code that
appears unreachable by the compiler, this comment
suppresses the “unreachable code” warning.

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language and Library Reference 9

Tokens
Source code is treated during preprocessing and compilation as a
sequence of tokens. There are five different types of tokens:

• Identifiers

• Keywords

• Constants

• Operators

• Separators

Adjacent identifiers, keywords, and literals must be separated with
white space. Other tokens should be separated by white space to
make the source code more readable. White space includes blanks,
horizontal and vertical tabs, newlines, form feeds, and comments.

Identifiers
An identifier consists of an arbitrary number of letters or digits;
however, it must not begin with a digit and it must not have the
same spelling as a keyword. Identifiers provide names for the
following language elements:

• Functions

• Data objects

• Labels

• Enumerated tags

• Variables

• Macros

• Typedefs

• Structure members

• Union members

Language Elements
Lexical Elements

10 Palm OS Protein C/C++ Compiler Language and Library Reference

Keywords
Keywords are identifiers reserved by the language for special use.

• Refer to the C language standard: ANSI/ISO/IEC 9899:1999
specification for a list of the keywords common to the C
language.

• Refer to the C++ language standard: ANSI/ISO/IEC
14882:1998 specification for a list of the keywords common to
the C++ language.

Extension keywords

The Palm OS compiler also recognizes the following keywords:

__align(n)
n may be 1, 2, 4, 8, or 16. When applied to a global object,
guarantees that the object is emitted with at least the
specified alignment. When applied to a type declaration (e.g.,
typedef or struct), applies to all global objects that are
instances of that type. Note: This keyword does not alter the
packing within a structure or modify what code is used to
access through a pointer. Use __pack or #pragma pack for
the former, and __packed for the latter.

asm
The asm keyword is used to pass information through the
compiler to the assembler. The Palm OS compiler permits
assembler code to be inlined using the keywords asm, _asm,
and __asm. The asm keyword has its normal C99 and C++
behavior; in addition, when used as the first keyword in a
function definition, the contents of the function are all taken
as assembly instructions and the function is emitted “naked,”
without a prologue or epilogue that pushes or pops registers
from the stack. (A ‘bx lr’ return instruction is placed after
your code, in case you do not explicitly return.) An asm
function is called in the same way as any function; its
arguments are in registers r0-r3 and on the stack, as is
defined by ATPCS:

asm int func (int a, int b) {
add r0, r0, r1 // return a+b
}

The “inline” qualifier can be used with asm functions to
indicate that the body of the asm function should be inserted

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language and Library Reference 11

at each call-site. (The asm function should not explicitly
return or use labels. As in the above example, it should fall
off the end to return execution to the caller.)

Supported use of asm routines is limited to “nop,” as an
inline asm statement and relatively small asm functions that
do not use labels.

__asm
Followed by curly brackets, indicates a multi-line inline
assembly block. Otherwise, indicates inline assembly until
the end of the current line.

__inline
An exact alias of the normal inline keyword, in C99 or
C++, depending on which is being compiled.

__int64
Alias for long long type.

__pack(n)
n may be 0, 1, 2, 4, 8, or 16. Applied to a structure definition,
this keyword changes the packing in effect for that structure.
This keyword overrides any #pragma pack() setting for
this structure. If zero (0) is selected, natural alignment is used
(not the current #pragma pack value).

__packed
Hybrid modifier: when applied to a structure definition,
forces the packing to be 1-byte aligned. When applied to a
pointer, forces all accesses through that pointer to assume an
unaligned pointer. (This is also the case when a pointer to a
__packed structure is used.)

__pure
In function prototypes modifying the function name, this
keyword indicates that the function has no side-effects and
relies only on its input parameters. Currently, the Palm OS
compiler ignores this keyword.

__ror32(x, y)
A built-in operator that returns the 32-bit unsigned integer x
rotated right by y bits.

__value_in_regs
When this keyword is applied to a function prototype or
declaration, states that the return value of the function, if it is

Language Elements
Lexical Elements

12 Palm OS Protein C/C++ Compiler Language and Library Reference

a small structure (16 bytes or less), is passed in processor
registers r0-r3. (Normally structure return values are passed
by pointer in a hidden first argument.)

This calling convention keyword is potentially useful to
interoperate with special routines.

Example:

struct div_result {int div, rem;};

struct div_result __value_in_regs do_div
(int x, int y);

__weak
In declarations of external objects (functions or data), this
modifier indicates that the object is not required and the
linker should fix up references if the object is not available
during linkage.

Constants
The value of any constant must be in the range of representable
values for its type. The C language contains the following types of
constants (also called literals):

• Integer (decimal, octal, or hexadecimal notation)

• Floating-point (double, float, long double, or
hexadecimal notation)

• Character (one or more characters in apostrophes)

• String (sequence of characters enclosed in double quotes)

• Enumeration

Operators
Operators can be classified as:

• Postfix

• Prefix

• Normal

• Boolean

• Assignment

• C++ Compatibility

Language Elements
Lexical Elements

Palm OS Protein C/C++ Compiler Language and Library Reference 13

Postfix

Postfix operators are operators that are suffixed to an expression,
such as, operand++.

Prefix

Prefix operators are operators that are prefixed to an expression,
such as, ++operand or !operand.

Normal

There are several normal operators that return the result defined for
each:

+ addition

- subtraction

* multiplication

/ division

% modulo

& AND

| OR

^ XOR

>> shift right

<< shift left

Boolean

The Boolean operators return either 1 (true) or 0 (false).

&& logical AND

|| logical OR

< less than

> greater than

<= less than equal

>= greater than equal

== equal

!= not equal

Language Elements
Lexical Elements

14 Palm OS Protein C/C++ Compiler Language and Library Reference

Assignment

An assignment operator stores the value of the right expression into
the left expression:

= a = b assigns the value of b into a

*= a *= b is equivalent to a = a * b

/= a /= b is equivalent to a = a / b

%= a %= b is equivalent to a = a % b

+= index += 2 is equivalent to index = index + 2

-= index -= 3 is equivalent to index = index - 3

<<= n1 <<= n2 is equivalent to n1 = n1 << n2

>>= n1 >>= n2 is equivalent to n1 = n1 >> n2

&= mask &= 2 is equivalent to mask = mask & 2

^= t1 ^= t2 is equivalent to t1 = t1 ^ t2

|= flag |= ON is equivalent to flag = flag | ON

C++ Compatibility

There are three new compound operators in C++:

.* Binds its second operand, which shall be of type
“pointer to member of T” (where T is a completely
defined class type) to its first operand, which shall be
of class T.

->* Binds its second operand, which shall be of type
“pointer to member of T” (where T is a completely
defined class type) to its first operand, which shall be
of type “pointer to T” or “pointer to a class of which T
is an unambiguous and accessible base class.”

:: Allows a type, an object, a function, an enumerator, or
a namespace declared in the global namespace to be
referred to even if its identifier has been hidden.

Language Elements
Preprocessor Directives

Palm OS Protein C/C++ Compiler Language and Library Reference 15

Separators
Separators can include:

() parenthesis

[] brackets

{ } braces

, comma

; semi-colon

: colon

Preprocessor Directives
Preprocessor directives instruct the preprocessor to act on the text of
the program. Preprocessor directives begin with the # token
followed by a preprocessor keyword. The # token must appear as
the first character that is not white space on a line. The # is not part
of the directive name and can be separated from the name with
white space. Except for some #pragma directives, preprocessor
directives can appear anywhere in a program.

#define
A preprocessor define directive directs the preprocessor to replace all
subsequent occurrences of a macro with specified replacement
tokens. This section describes the #define commands that the
Palm OS compiler recognizes.

__APGE__
Defined as 1.

__APOGEE__
Defined as 1.

__arm
Defined as 1.

_BOOL
Defined in C++ mode when bool is a keyword.

__cplusplus
Defined in C++ mode.

Language Elements
Preprocessor Directives

16 Palm OS Protein C/C++ Compiler Language and Library Reference

c_plusplus
Defined in default C++ mode, but not in strict mode.

__DATE__
Defined in all modes to the date of the compilation in the
form “Mmm dd yyyy.”

__EDG__
Always defined.

__EDG_VERSION__
Defined to an integral value that represents the version
number of the front end. For example, version 2.30 is
represented as 230.

__embedded_cplusplus
Defined as 1 in embedded C++ mode.

__EXCEPTIONS
Defined in C++ mode when exception handling is enabled.

_PACC_VER
0xMmmrrbbb, where (M=Major, m=minor, r=rev, b=build).
For example, 0x1000000D, for 1.0.0.13.

__PALMSOURCE__
Defined as 1.

__PSI__
Defined as 1.

__RTTI
Defined in C++ mode when RTTI is enabled.

__SIGNED_CHARS__
Defined when plain character is signed. (By default, the
character type is unsigned.)

__STDC__
Defined in ANSI C mode and in C++ mode. In C++ mode,
the value may be redefined.

__STDC_HOSTED__
Defined in C99 mode with the value zero (0).

__STDC_VERSION__
Defined in ANSI C mode with the value 199901L.

Language Elements
Preprocessor Directives

Palm OS Protein C/C++ Compiler Language and Library Reference 17

__TIME__
Defined in all modes to the time of the compilation in the
form “hh:mm:ss.”

_WCHAR_T
Defined in C++ mode when wchar_t is a keyword.

#pragma
A pragma directive is an implementation-defined instruction to the
compiler. This section describes the #pragma commands that the
Palm OS compiler recognizes.

#pragma once
Indicates that a source file (usually a header) need not be
included again. (Thus an #include of the same header has
no effect.) If normal header guards are used, the compiler
optimizes them into a #pragma once:

#pragma once // unnecessary

#ifndef MY_HEADER_GUARD

#define MY_HEADER_GUARD

// header contents ...

#endif /* MY_HEADER_GUARD */

#pragma pack(n)
Sets current structure packing to n, where n is 1, 2, 4, 8, or 16.

#pragma pack()
Resets current structure packing to natural alignment.

#pragma pack (pop [,name] [,n])
If name is supplied, pops back to the position on the stack
with that name, otherwise pops a single value off the stack. If
n is supplied, sets the alignment to that value after popping.

#pragma pack (push [,name] [,n])
Pushes the current structure packing onto a stack. If name (an
identifier) is supplied, names the prior position on the stack.
If n is supplied, sets the packing to that value, after pushing
the original value.

#pragma weak name
Same as declaring the global object with the external name of
name with the __WEAK attribute.

Language Elements
Preprocessor Directives

18 Palm OS Protein C/C++ Compiler Language and Library Reference

Part II
C/C++ Compiler
Library Reference

This part is organized in the following manner: general library and
runtime function information appears first, followed by detailed
header file information that documents the supported structures,
runtime functions, and macros. Note that header file chapters,
which are organized alphabetically, follow the “Runtime Library
Functions” chapter, which overviews the supported runtime
functions provided by the operating system and the unsupported
runtime functions not implemented by Palm OS.

STLport/iostream 21

Palm OS-Specific Libraries 23

Runtime Library Functions 25

assert.h . . 39

ctype.h . . 41

errno.h . . 49

fcntl.h . 51

in.h . 53

inet.h . 57

ioctl.h . 63

iso646.h . 65

locale.h . . 67

math.h . 69

netdb.h . 109

PalmMath.h. 127

select.h . 131

socket.h . 133

stdarg.h . 145

stddef.h . 147

stdio.h . 149

stdlib.h . 179

string.h. 197

strings.h . 213

time.h . 217

time.h . 229

uio.h . 235

unistd.h . 237

wchar.h . 241

Palm OS Protein C/C++ Compiler Language and Library Reference 21

3
STLport/iostream
The Palm OS Protein C/C++ Compiler Suite includes and supports
the STLport implementation of the C++ standard template library.

Specific details regarding the implementation of the C++ STLport/
iostream material is not currently documented in this manual; for
documentation, visit http://www.stlport.org/doc/index.html.
However, the following information may be useful:

• iostreams are implemented in terms of stdio; cout is
connected to stdout, cerr is connected to stderr, and
cin is connected to stdin.

• no locale functionality beyond the C locale is supported.

• all other pieces of STL functionality are believed to be
supported.

For more information on the functionality provided by the C++
standard library, please consult documentation on the C++
language, such as The C++ Programming Language, Third Edition, by
Bjarne Stroustrup, or the ANSI/ISO specification, available as
ANSI/ISO/IEC document 14882:1998.

STLport/ iostream

22 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 23

4
Palm OS-Specific
Libraries
An integral part of the Palm OS Protein C/C++ Compiler are the
standard headers, startup code, and run-time libraries. The supplied
run-time libraries serve several purposes:

• cpp — The cpp libraries implement objects common to any
C++ standard library (e.g., the standard exception objects).

• eabi — The eabi libraries implement preliminary ARM EABI
support on top of Palm OS. They implement the necessary
EABI support routines, translating them into Palm OS
specific routine calls.

• pacc — The pacc libraries implement objects and routines
that are unique or particular to the Palm OS compiler and are
not required or useful with any other tool chain.

• STLport — The C++ standard template library features
thread safety, improved memory utilization, improved run-
time efficiency, and new data structures, including hash
tables.

• support — This is an implementation of the floating-point
and integral support functions. The Palm OS compiler
automatically links with this library, however, the FloatMgr
library should also be linked.

Palm OS-Specif ic Libraries
The Palm OS Implementation of the Standard C Library (libc)

24 Palm OS Protein C/C++ Compiler Language and Library Reference

The Palm OS Implementation of the Standard C
Library (libc)

The Palm OS implementation of the standard C library is derived
from the NetBSD ARM source base, with some modification due to
the non-Unix nature of Palm OS:

• In the future, it may be possible to direct stdout/stdin
operations through other I/O devices; no timeline for this
has been stated.

• The C99 header <complex.h> is not supported in this
version of libc. Applications using complex numbers
should use STLport or another ANSI compliant C++ library.

• The C99 header <fenv.h> is not supported in this version of
libc. MathLib does not raise floating exceptions and does
not respond to varying rounding modes. Checking errno,
and checking the return value can handle exceptional cases.

• There is also no <setjmp.h> implementation. The
<ErrTryCatch.h> header can provide much of the same
functionality, but the standard C interface is not yet
supported.

• In addition, the following POSIX header files are not
documented in this reference because they are either fairly
self-explanatory or do not contain any runtime library
functions that are provided by the operating system.

– <climits.h>

– <inttypes.h>

– <limits.h>

– <namespace.h>

– <paths.h>

– <signal.h>

– <stdint.h>

– <termios.h>

Palm OS Protein C/C++ Compiler Language and Library Reference 25

5
Runtime Library
Functions

Supported Functions
The following is an alphabetical list of runtime library functions, as
defined in the POSIX headers for Palm OS 6.0.1, which are explicitly
provided by the operating system. For detailed information about
any of these functions, see the individual header file chapters that
follow, beginning with Chapter 6, “assert.h.”

Table 5.1 posix/ctype.h

isalnum() isgraph() isupper()

isalpha() islower() isxdigit()

isblank() isprint() tolower()

iscntrl() ispunct() toupper()

isdigit() isspace()

Table 5.2 posix/fcntl.h

fcntl() open()

Table 5.3 posix/math.h

abs() expf() logf()

acos() expl() logl()

Runtime Library Functions
Supported Functions

26 Palm OS Protein C/C++ Compiler Language and Library Reference

acosf() expm1() modf()

acosh() fabs() modff()

acosl() fabsf() modfl()

asin() fabsl() nextafter()

asinf() floor() pow()

asinh() floorf() powf()

asinl() floorl() powl()

atan() fmod() remainder()

atan2() fmodf() rint()

atan2f() fmodl() scalbn()

atan2l() frexp() sin()

atanf() frexpf() sinf()

atanh() frexpl() sinh()

atanl() hypot() sinhf()

cbrt() hypotf() sinhl()

ceil() hypotl() sinl()

ceilf() ilogb() sqrt()

ceill() ldexp() sqrtf()

copysign() ldexpf() sqrtl()

cos() ldexpl() tan()

cosf() log() tanf()

cosh() log10() tanh()

coshf() log10f() tanhf()

coshl() log10l() tanhl()

Table 5.3 posix/math.h (continued)

Runtime Library Functions
Supported Functions

Palm OS Protein C/C++ Compiler Language and Library Reference 27

cosl() log1p() tanl()

exp() logb()

Table 5.3 posix/math.h (continued)

Table 5.4 posix/netdb.h

endhostent() gethostbyname2() getprotoent()

endnetent() gethostent() getservbyname()

endprotoent() getipnodebyaddr() getservbyport()

endservent() getipnodebyname() getservent()

freeaddrinfo() getnameinfo() hstrerror()

freehostent() getnetbyaddr() sethostent()

gai_strerror() getnetbyname() setnetent()

getaddrinfo() getnetent() setprotoent()

gethostbyaddr() getprotobyname() setservent()

gethostbyname() getprotobynumber()

Table 5.5 posix/stdio.h

asprintf() freopen() rewind()

clearerr() fscanf() scanf()

fclose() fseek() setbuf()

fdopen() fseeko() setbuffer()

feof() fsetpos() setlinebuf()

ferror() ftell() setvbuf()

fflush() ftello() snprintf()

fgetc() fwrite() sprintf()

Runtime Library Functions
Supported Functions

28 Palm OS Protein C/C++ Compiler Language and Library Reference

fgetln() getc() sscanf()

fgetpos() getchar() ungetc()

fgets() gets() vasprintf()

fileno() getw() vfprintf()

fopen() perror() vprintf()

fprintf() printf() vscanf()

fpurge() putc() vsnprintf()

fputc() putchar() vsprintf()

fputs() puts() vsscanf()

fread() putw()

Table 5.5 posix/stdio.h (continued)

Table 5.6 posix/stdlib.h

abs() labs() realloc()

atof() ldiv() setenv()

atoi() llabs() srand()

atol() malloc() srandom()

atoll() putenv() strtod()

bsearch() qsort() strtol()

calloc() qsort_r() strtoll()

div() rand() strtoul()

free() rand_r() strtoull()

getenv() random() unsetenv()

inplace_realloc()

Runtime Library Functions
Supported Functions

Palm OS Protein C/C++ Compiler Language and Library Reference 29

Table 5.7 posix/string.h

memchr() strcspn() strncpy()

memcmp() strdup() strpbrk()

memcpy() strerror() strrchr()

memmove() strerror_r() strsep()

memset() strlcat() strspn()

strcat() strlcpy() strstr()

strchr() strlen() strtok()

strcmp() strncat() strtok_r()

strcoll() strncmp() strxfrm()

strcpy()

Table 5.8 posix/strings.h

bcopy() strcasecmp()

bzero() strncasecmp()

Table 5.9 posix/time.h

asctime() difftime() mktime()

asctime_r() gmtime() strftime()

clock() gmtime_r() time()

ctime() localtime() time()

ctime_r() localtime_r()

Runtime Library Functions
Supported Functions

30 Palm OS Protein C/C++ Compiler Language and Library Reference

Table 5.10 posix/unistd.h

close() isatty() write()

getopt() read()

Table 5.11 posix/arpa/inet.h

inet_addr() inet_makeaddr() inet_ntoa()

inet_aton() inet_netof() inet_ntop()

inet_lnaof() inet_network() inet_pton()

Table 5.12 posix/netinet/in.h

htonl() ntohl()

htons() ntohl()

Table 5.13 posix/sys/ioctl.h

ioctl()

Table 5.14 posix/sys/PalmMath.h

lceilf() lfloorf() sincosf()

Table 5.15 posix/sys/select.h

select()

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language and Library Reference 31

Unsupported Functions
The following is an alphabetical list of runtime library functions,
sorted by header file name, declared in the POSIX headers that are
not implemented by the operating system.

Table 5.16 posix/sys/socket.h

accept() listen() sendmsg()

bind() recv() sendto()

connect() recvfrom() setsockopt()

getpeername() recvmsg() shutdown()

getsockname() send() socket()

getsockopt()

Table 5.17 posix/sys/time.h

getcountrycode() palm_seconds_to_time_t()

getgmtoffset() settime()

gettimezone() settimezone()

hastimezone() system_real_time()

localtime_tz() system_time()

mktime_tz() time_t_to_palm_seconds()

Table 5.18 posix/sys/uio.h

readv() writev()

Runtime Library Functions
Unsupported Functions

32 Palm OS Protein C/C++ Compiler Language and Library Reference

Table 5.19 posix/ctype.h

isascii()
(this is handled via a #define)

toascii()
(this is handled via a #define)

Table 5.20 posix/inttypes.h

strtoimax() strtoumax()

Table 5.21 posix/locale.h

setlocale()

Table 5.22 posix/math.h

erf() islessequal() modf()

erfc() islessgreater() nan()

exp2() isunordered() nearbyint()

fdim() lgamma() nexttoward()

fma() llrint() remquo()

fmax() llround() round()

fmin() log2() scalbln()

isgreater() lrint() tgamma()

isgreaterequal() lround() trunc()

isless()

In addition, any of the above functions that have float overrides (suffixed with an
“f”) or long double overrides (suffixed with an “l”) are also unsupported. For
example, exp2f() and exp2l().

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language and Library Reference 33

Table 5.23 posix/signal.h

kill() sigblock() sigpending()

killpg() sigdelset() sigprocmask()

psignal() sigemptyset() sigreturn()

raise() sigfillset() sigsetmask()

sigaction() siginterrupt() sigstack()

sigaddset() sigismember() sigsuspend()

sigaltstack() sigpause() sigvec()

Table 5.24 posix/stdio.h

ctermid() getc_unlocked() remove()

cuserid() getchar_unlocked() rename()

flockfile() pclose() tempnam()

ftrylockfile() popen() tmpfile()

funlockfile() putc_unlocked() tmpnam()

funopen() putchar_unlocked()

Table 5.25 posix/stdlib.h

a64l() daemon() mkdtemp()

abort() devname() mkstemp()

alloca() drand48() mktemp()

atexit() erand48() mrand48()

cfree() exit() nrand48()

cgetcap() getbsize() qdiv()

Runtime Library Functions
Unsupported Functions

34 Palm OS Protein C/C++ Compiler Language and Library Reference

cgetclose() getloadavg() radixsort()

cgetent() heapsort() realpath()

cgetfirst() initstate() seed48()

cgetmatch() jrand48() setkey()

cgetnext() l64a() setstate()

cgetnum() lcong48() sradixsort()

cgetset() lldiv() srand48()

cgetstr() lrand48() ttyslot()

cgetustr() mergesort() valloc()

Table 5.25 posix/stdlib.h (continued)

Table 5.26 posix/string.h

memccpy()

Table 5.27 posix/strings.h

bcmp() index()

ffs() rindex()

Table 5.28 posix/termios.h

tcdrain() tcflush() tcsendbreak()

tcflow() tcgetpgrp() tcsetpgrp()

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language and Library Reference 35

Table 5.29 posix/time.h

clock_getres() strptime() timer_getoverrun()

clock_gettime() time2posix() timer_gettime()

clock_settime() timelocal() timer_settime()

nanosleep() timeoff() timezone()

offtime() timer_create() tzset()

posix2time() timer_delete() tzsetwall()

Table 5.30 posix/unistd.h

access() getpass() setdomainname()

acct() getpgid() setegid()

alarm() getpgrp() seteuid()

brk() getpid() setgid()

chdir() getppid() setgroups()

chown() getsid() sethostid()

chroot() getsubopt() sethostname()

confstr() getuid() setlogin()

crypt() getusershell() setmode()

cuserid() getwd() setpgid()

des_cipher() initgroups() setpgrp()

des_setkey() iruserok() setregid()

dup() iruserok_sa() setreuid()

dup2() issetugid() setrgid()

encrypt() lchown() setruid()

Runtime Library Functions
Unsupported Functions

36 Palm OS Protein C/C++ Compiler Language and Library Reference

endusershell() link() setsid()

exect() lockf() setuid()

fchdir() lseek() setusershell()

fchown() nfssvc() sleep()

fchroot() nice() strmode()

fdatasync() pathconf() strsignal()

fpathconf() pause() swab()

fsync() pread() swapctl()

ftruncate() profil() swapon()

getcwd() psignal() symlink()

getdomainname() pwrite() sync()

getdtablesize() rcmd() syscall()

getegid() rcmd_af() sysconf()

geteuid() readlink() tcgetpgrp()

getgid() reboot() tcsetpgrp()

getgrouplist() rename() truncate()

getgroups() revoke() ttyname()

gethostid() rmdir() ualarm()

gethostname() rresvport() undelete()

getlogin() rresvport_af() unlink()

getmode() ruserok() usleep()

getpagesize() sbrk() vfork()

Table 5.30 posix/unistd.h (continued)

Runtime Library Functions
Unsupported Functions

Palm OS Protein C/C++ Compiler Language and Library Reference 37

Table 5.31 posix/wchar.h

fwide() wcsncat() wcstoul()

wcscat() wcsncmp() wcswidth()

wcschr() wcsncpy() wcwidth()

wcscmp() wcspbrk() wmemchr()

wcscpy() wcsrchr() wmemcmp()

wcscspn() wcsspn() wmemcpy()

wcslcat() wcsstr() wmemmove()

wcslcpy() wcstod() wmemset()

wcslen() wcstol()

Table 5.32 posix/machine/arm/param.h

delay()

Table 5.33 posix/sys/bswap.h

bswap16() bswap32() bswap64()

Table 5.34 posix/sys/socket.h

socketpair()

Table 5.35 posix/sys/stat.h

chflags() lchflags() mkfifo()

chmod() lchmod() mknod()

Runtime Library Functions
Unsupported Functions

38 Palm OS Protein C/C++ Compiler Language and Library Reference

fchflags() lstat() stat()

fchmod() mkdir() umask()

fstat()

Table 5.35 posix/sys/stat.h (continued)

Table 5.36 posix/sys/time.h

adjtime() itimerdecr() ratecheck()

adjtime1() itimerfix() setitimer()

clock_settime1() lutimes() settimeofday()

futimes() microtime() settimeofday1()

getitimer() ppsratecheck() utimes()

gettimeofday()

Table 5.37 posix/sys/uio.h

preadv() pwritev()

Palm OS Protein C/C++ Compiler Language and Library Reference 39

6
assert.h
The <assert.h> header defines the assert() macro, which is
used for debugging purposes. It also refers to another macro,
NDEBUG, which is defined elsewhere.

Functions and Macros

assert Macro
Purpose Outputs a diagnostic message to the standard error file and stops

the program if a test fails.

Prototype assert (condition)

Parameters → condition
Diagnostic information.

Comments If condition is true, the assert() macro does nothing.

assert.h
assert

40 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 41

7
ctype.h
The <ctype.h> header defines several functions useful for
classifying and converting characters.

Functions and Macros

isalnum Function
Purpose Tests for any character that is alphanumeric (isalpha() or

isdigit() is true).

Declared In posix/ctype.h

Prototype int isalnum (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsAlNum() macro; see Exploring Palm OS: Text and
Localization.

See Also isalpha(), isdigit()

ctype.h
isalpha

42 Palm OS Protein C/C++ Compiler Language and Library Reference

isalpha Function
Purpose Tests for any character that is a letter in the alphabet (islower() or

isupper() is true).

Declared In posix/ctype.h

Prototype int isalpha (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsAlpha() macro; see Exploring Palm OS: Text and
Localization.

See Also islower(), isupper()

isblank Function
Purpose Tests for any character that is a standard blank-space character.

Declared In posix/ctype.h

Prototype int isblank (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII.

See Also isspace()

ctype.h
isdigit

Palm OS Protein C/C++ Compiler Language and Library Reference 43

iscntrl Function
Purpose Tests for any control character.

Declared In posix/ctype.h

Prototype int iscntrl (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsCntrl() macro; see Exploring Palm OS: Text and
Localization.

isdigit Function
Purpose Tests for any decimal-digit character.

Declared In posix/ctype.h

Prototype int isdigit (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsDigit() macro; see Exploring Palm OS: Text and
Localization.

ctype.h
isgraph

44 Palm OS Protein C/C++ Compiler Language and Library Reference

isgraph Function
Purpose Tests for any printing character except space (' ').

Declared In posix/ctype.h

Prototype int isgraph (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsGraph() macro; see Exploring Palm OS: Text and
Localization.

islower Function
Purpose Tests for any character that is a lowercase letter.

Declared In posix/ctype.h

Prototype int islower (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsLower() macro; see Exploring Palm OS: Text and
Localization.

See Also isupper()

ctype.h
ispunct

Palm OS Protein C/C++ Compiler Language and Library Reference 45

isprint Function
Purpose Tests for any printing character including space (' ').

Declared In posix/ctype.h

Prototype int isprint (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsPrint() macro; see Exploring Palm OS: Text and
Localization.

ispunct Function
Purpose Tests for any printing character that is a punctuation character.

Declared In posix/ctype.h

Prototype int ispunct (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsPunct() macro; see Exploring Palm OS: Text and
Localization.

ctype.h
isspace

46 Palm OS Protein C/C++ Compiler Language and Library Reference

isspace Function
Purpose Tests for any printing character that is a standard white-space

character.

Declared In posix/ctype.h

Prototype int isspace (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsSpace() macro; see Exploring Palm OS: Text and
Localization.

isupper Function
Purpose Tests for any printing character that is an uppercase letter.

Declared In posix/ctype.h

Prototype int isupper (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsUpper() macro; see Exploring Palm OS: Text and
Localization.

See Also islower()

ctype.h
tolower

Palm OS Protein C/C++ Compiler Language and Library Reference 47

isxdigit Function
Purpose Tests for any hexadecimal-digit character.

Declared In posix/ctype.h

Prototype int isalnum (int character)

Parameters → character
The 7-bit ASCII character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. It only works for 7-bit
ASCII. The Palm OS equivalent of this function is the
TxtCharIsHex() macro; see Exploring Palm OS: Text and
Localization.

tolower Function
Purpose Converts an uppercase letter to a corresponding lowercase letter.

Declared In posix/ctype.h

Prototype int tolower (int character)

Parameters → character
The character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. The Palm OS
equivalents of this function are the StrToLower() function and
TxtTransliterate() function; see Exploring Palm OS: Text and
Localization.

See Also toupper()

ctype.h
toupper

48 Palm OS Protein C/C++ Compiler Language and Library Reference

toupper Function
Purpose Converts a lowercase letter to a corresponding uppercase letter.

Declared In posix/ctype.h

Prototype int toupper (int character)

Parameters → character
The character being evaluated.

Returns Returns a non-zero value if the character tests true; zero (0) if the
character tests false.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use. The Palm OS
equivalent of this function is the TxtTransliterate() function;
see Exploring Palm OS: Text and Localization.

See Also tolower()

Palm OS Protein C/C++ Compiler Language and Library Reference 49

8
errno.h
The <errno.h> header provides the global error code variable
errno.

Global Variables

errno Variable
Purpose Global error code variable.

Declared In posix/errno.h

Prototype extern int errno

Comments The errno variable is used by many functions to return error
values. The value of errno is defined only after a call to a function
for which it is explicitly stated to be set and until it is changed by the
next function call. The value of errno should only be examined
when it is indicated to be valid by a function’s return value.
Programs should obtain the definition of errno by the inclusion of
<errno.h>. It is unspecified whether errno is a macro or an
identifier declared with external linkage.

The errno variable has a value of zero (0) at the beginning. If an
error occurs, then this variable is given the value of the error
number. In some cases, the behavior of the math library with regard
to errno is implementation defined.

Nothing in the <errno.h> header is specific to Palm OS. The
specific numeric values associated with the error names are not
portable and should be treated as opaque by applications.

See Also perror(), strerror()

errno.h
errno Variable

50 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 51

9
fcntl.h
The <fcntl.h> header defines several functions useful for porting
code from Unix. These functions are not part of the ANSI C
standard.

Functions and Macros

fcntl Function
Purpose Manipulates a file descriptor with a specified command.

Declared In posix/fcntl.h

Prototype extern int fcntl (int fd, int op, ...)

Parameters → fd
The file descriptor.

→ op
The command.

Returns Returns the file descriptor for the created file upon successful
completion. Otherwise, -1 is returned and the global variable errno
is set to indicate the error.

Compatibility This function is not in the C99 specification.

open Function
Purpose Opens a file and returns its ID.

Declared In posix/fcntl.h

Prototype extern int open (const char *pathname,
int oflags, ...)

Parameters → pathname
The filename to open for reading and/or writing.

fcntl .h
open

52 Palm OS Protein C/C++ Compiler Language and Library Reference

→ oflags
The open mode. The open flags (O_* symbols such as
O_RDONLY) are defined in the <fcntl.h> header.

Returns Returns the file ID specified as an integer value.

Compatibility This function is not in the C99 specification.

Palm OS Protein C/C++ Compiler Language and Library Reference 53

10
in.h
The <in.h> header defines functions useful for converting between
Internet host and network addresses.

Structures and Types

sockaddr_in Struct
Purpose Defines a structure used to store Internet addresses.

Declared In posix/netinet/in.h

Prototype struct sockaddr_in {
 sa_family_t sin_family;
 in_port_t sin_port;
 struct in_addr sin_addr;
 uint8_t sin_zero[8];
}

Fields sin_family
AF_INET.

sin_port
The port number.

sin_addr
The IP address.

sin_zero
The address value.

in.h
Functions and Macros

54 Palm OS Protein C/C++ Compiler Language and Library Reference

Functions and Macros

htonl Function
Purpose Converts 32-bit values between host byte order and network byte

order.

Declared In posix/netinet/in.h

Prototype uint32_t htonl (uint32_t host32)

Parameters → host32
The value being converted.

Returns Returns an unsigned integer.

Compatibility This function is not in the C99 specification.

See Also gethostbyname(), getservent()

htons Function
Purpose Converts 16-bit values between host byte order and network byte

order.

Declared In posix/netinet/in.h

Prototype uint16_t htons (uint16_t host16)

Parameters → host16
The value being converted.

Returns Returns an unsigned short integer.

Compatibility This function is not in the C99 specification.

See Also gethostbyname(), getservent()

in.h
ntohs

Palm OS Protein C/C++ Compiler Language and Library Reference 55

ntohl Function
Purpose Converts 32-bit values between network byte order and host byte

order.

Declared In posix/netinet/in.h

Prototype uint32_t ntohl (uint32_t net32)

Parameters → net32
The value being converted.

Returns Returns an unsigned integer.

Compatibility This function is not in the C99 specification.

See Also gethostbyname(), getservent()

ntohs Function
Purpose Converts 16-bit values between network byte order and host byte

order.

Declared In posix/netinet/in.h

Prototype uint16_t ntohs (uint16_t net16)

Parameters → net16
The value being converted.

Returns Returns an unsigned short integer.

Compatibility This function is not in the C99 specification.

See Also gethostbyname(), getservent()

in.h
ntohs

56 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 57

11
inet.h
The <inet.h> header defines several functions useful for Internet
address manipulation.

Functions and Macros

inet_addr Function
Purpose Interprets the specified character string and returns a number

suitable for use as an Internet address.

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_addr (const char *cp)

Parameters → cp
A character string.

Returns Returns a number suitable for use as an Internet address.

Comments This is a standard network function.

Compatibility This function is not in the C99 specification.

See Also inet_network()

inet_aton Function
Purpose Interprets the specified character string as an Internet address,

placing the address into the structure provided.

Declared In posix/arpa/inet.h

Prototype int inet_aton (const char *cp,
struct in_addr *addr)

Parameters → cp
A character string.

inet.h
inet_lnaof

58 Palm OS Protein C/C++ Compiler Language and Library Reference

→ addr
An Internet address.

Returns Returns 1 if the string was successfully interpreted, or zero (0) if the
string is invalid.

Comments This is a non-standard network function.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

inet_lnaof Function
Purpose Breaks apart the specified Internet host address and returns the local

network address part (in host order).

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_lnaof (struct in_addr in)

Parameters → in
An Internet address.

Returns Returns the local network address (in host order).

Comments This is a non-standard network function.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also inet_netof()

inet_makeaddr Function
Purpose Takes an Internet network number and a local network address

(both in host order) and constructs an Internet address from it.

Declared In posix/arpa/inet.h

Prototype struct in_addr inet_makeaddr (int net, int lna)

Parameters → net
An Internet network number.

→ lna
A local network address.

inet.h
inet_network

Palm OS Protein C/C++ Compiler Language and Library Reference 59

Returns Returns an Internet address.

Comments This is a non-standard network function.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

inet_netof Function
Purpose Breaks apart the specified Internet host address and returns the

network number part (in host order).

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_netof (struct in_addr in)

Parameters → in
An Internet address.

Returns Returns the network number (in host order).

Comments This is a non-standard network function.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also inet_lnaof()

inet_network Function
Purpose Interprets the specified character string and returns a number

suitable for use as an Internet network number.

Declared In posix/arpa/inet.h

Prototype in_addr_t inet_network (const char *cp)

Parameters → cp
A character string.

Returns Returns a number suitable for use as an Internet network number.

Comments This is a non-standard network function.

Compatibility This function is not in the C99 specification.

inet.h
inet_ntoa

60 Palm OS Protein C/C++ Compiler Language and Library Reference

This function is a Palm OS extension (not present in C99 or Unix).

See Also inet_addr()

inet_ntoa Function
Purpose Takes an Internet address and returns an ASCII string representing

the address.

Declared In posix/arpa/inet.h

Prototype const char *inet_ntoa (struct in_addr in)

Parameters → in
An Internet address.

Returns Returns a pointer to an ASCII string representing the address.

Comments This is a standard network function.

Compatibility This function is not in the C99 specification.

inet_ntop Function
Purpose Converts a network format address to presentation format.

Declared In posix/arpa/inet.h

Prototype const char *inet_ntop (int af, const void *src,
char *dst, size_t size)

Parameters → af
The address family.

→ src
The source buffer.

→ dst
The destination buffer.

→ size
The size of the destination buffer.

Returns Returns a pointer to the destination buffer. Otherwise, NULL is
returned if a system error occurs and the global variable errno is
set to indicate the error.

Comments This is a standard network function.

inet.h
inet_pton

Palm OS Protein C/C++ Compiler Language and Library Reference 61

Compatibility This function is not in the C99 specification.

inet_pton Function
Purpose Converts a presentation format address to network format.

Declared In posix/arpa/inet.h

Prototype int inet_pton (int af, const char *src,
void *dst)

Parameters → af
The address family.

→ src
The printable form as specified in a character string.

→ dst
The destination string.

Returns Returns 1 if the address was valid for the specified address family,
or zero (0) if the address was not parseable in the specified address
family, or -1 if some system error occurred (in which case the global
variable errno is set to indicate the error).

Comments This is a standard network function.

Compatibility This function is not in the C99 specification.

inet.h
inet_pton

62 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 63

12
ioctl.h
The <ioctl.h> header defines a function to manipulate the
underlying device parameters of special files.

Functions and Macros

ioctl Function
Purpose Performs a variety of device-specific control functions on device

special files. This function is supported for the following special file
types: sockets, console devices, and communication port devices.

Declared In posix/sys/ioctl.h

Prototype int ioctl (int d, unsigned long request,
void *argp)

Parameters → d
An open file descriptor.

→ request
An ioctl request.

→ argp
A pointer to whatever call-specific data is needed by the
specific operation being performed. Every ioctl() request
has its own requirements.

Returns Returns -1 if some system error occurred (in which case the global
variable errno is set to indicate the error).

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

ioctl .h
ioctl

64 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 65

13
iso646.h
The <iso646.h> header defines several constants that expand to
the corresponding tokens, useful for programming in ISO 646
variant character sets.

Operators
Purpose Defines constants that expand to the corresponding tokens.

Declared In posix/iso646.h

Constants #define and &&
The operator &&.

#define and_eq &=
The operator &=.

#define bitand &
The operator &.

#define bitor |
The operator |.

#define compl ~
The operator ~.

#define not !
The operator !.

#define not_eq !=
The operator !=.

#define or ||
The operator ||.

#define or_eq |=
The operator |=.

#define xor ^
The operator ^.

#define xor_eq ^=
The operator ^=.

iso646.h
Operators

66 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 67

14
locale.h
The <locale.h> header support in libc has not been hooked up
with Palm OS and thus should not be used. The macros and
functions defined in this header do not work as expected and
should be avoided.

locale.h

68 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 69

15
math.h
The <math.h> header defines several mathematical functions.

This header is new with Palm OS Protein. It is a broad subset of
section 7.12 of the C language standard ANSI/ISO/IEC 9899:1999.

MathLib is part of SystemLib. To use MathLib, simply include the
<math.h> header in your source files.

Supported features

The Palm OS Protein C/C++ Compiler supports the use of infinity
and NaN (not-a-number) values.

The following C99 macros are supported in <math.h>:

• FLT_EVAL

• FP_ILOGBNAN

• FP_ILOGB0

• FP_INFINITE

• FP_NAN

• FP_NORMAL

• FP_SUBNORMAL

• FP_ZER0

• HUGE_VAL

• HUGE_VALF

• HUGE_VALL

• INFINITY

• MATH_ERREXCEPT

• math_errhandling

• MATH_ERRNO

• NAN

math.h

70 Palm OS Protein C/C++ Compiler Language and Library Reference

Differences from the C99 specification

• All of <math.h> as specified in the C language standard
ANSI/ISO/IEC 9899:1990 is provided as well as most of the
extensions specified in 1999 standard. Parts of <math.h> that
are not supported are listed under the line:

#ifdef __USE_C99_EXTENSIONS__

Functions in this section are preprocessed out by default and
are not tested or supplied by PalmSource.

• Parallel sets of functions for float and long double
arguments types are defined only for 1989 ANSI C functions.

Constraints

• Existing 68K applications must continue to supply the 68K
MathLib if required by the application.

• There are some cases in this version of MathLib where the
global variable errno does not get set when it should.

• The float and long double overloads as specified in
section 26.5 of the ANSI C++ standard are not provided.

• The float and long double counterparts suffixed by “f”
and “l” for the functions defined in section 7.12 of the 1989
ANSI C language standard are supported. A few of the float
counterparts have Palm OS implementations, but most of
these simply cast and return the double version.

• A handful of single precision counterparts are provided as a
high performance alternative to their double equivalents.
However, there are some additional deviations from the
standard that were made to achieve high performance,
including:

– none of the single precision functions set the global
variable errno.

– sqrtf() flushes denormals to zero (0).

– ceilf(-0) is 0 not –0 as specified in Annex F.9.6.1 of the
ANSI standard.

– hypotf() does not follow the spec for NaNs and
infinities.

• The library, libm.a, is no longer supported and must be
removed from existing projects.

math.h
acos

Palm OS Protein C/C++ Compiler Language and Library Reference 71

Functions and Macros

abs Function
Purpose Computes the absolute value of x.

Declared In posix/math.h

Prototype double abs (double x)
float abs (float x)
long double abs (long double x)

Parameters → x
Value to be evaluated.

Returns Returns the absolute value of x.

Comments Chapter 26.5 of the ANSI C++ standard modifies <math.h> by
adding the abs() overloads. These overloads are equivalent to the
ANSI standard fabs() family of functions.

See Also fabs()

acos Function
Purpose Computes the arc-cosine of x.

Declared In posix/math.h

Prototype double acos (double x)

Parameters → x
Value of type double to be evaluated. The value x must be
within the range of -1 to +1 (inclusive).

Returns Returns the arc-cosine of x, a value within the range of zero (0) to π
(inclusive).

Compatibility This function is in the C99 specification.

See Also asin(), atan()

math.h
acosf

72 Palm OS Protein C/C++ Compiler Language and Library Reference

acosf Function
Purpose Computes the arc-cosine of x.

Declared In posix/math.h

Prototype float acosf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the arc-cosine of x, a value within the range of zero (0) to π
(inclusive).

Compatibility This function is in the C99 specification.

See Also asinf(), atanf()

acosh Function
Purpose Computes the inverse hyperbolic cosine of x.

Declared In posix/math.h

Prototype double acosh (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the inverse hyperbolic cosine of x, a value without a range
limit.

Compatibility This function is in the C99 specification.

See Also asinh(), atanh()

acosl Function
Purpose Computes the arc-cosine of x.

Declared In posix/math.h

Prototype long double acosl (long double x)

Parameters → x
Value of type long double to be evaluated.

math.h
asinf

Palm OS Protein C/C++ Compiler Language and Library Reference 73

Returns Returns the arc-cosine of x, a value within the range of zero (0) to π
(inclusive).

Compatibility This function is in the C99 specification.

See Also asinl(), atanl()

asin Function
Purpose Computes the arc-sine of x.

Declared In posix/math.h

Prototype double asin (double x)

Parameters → x
Value of type double to be evaluated. The value x must be
within the range of -1 to +1 (inclusive).

Returns Returns the arc-sine of x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also acos(), atan()

asinf Function
Purpose Computes the arc-sine of x.

Declared In posix/math.h

Prototype float asinf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the arc-sine of x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also acosf(), atanf()

math.h
asinh

74 Palm OS Protein C/C++ Compiler Language and Library Reference

asinh Function
Purpose Computes the inverse hyperbolic sine of x.

Declared In posix/math.h

Prototype double asinh (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the inverse hyperbolic sine of x, a value without a range
limit.

Compatibility This function is in the C99 specification.

See Also acosh(), atanh()

asinl Function
Purpose Computes the arc-sine of x.

Declared In posix/math.h

Prototype long double asinl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the arc-sine of x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also acosl(), atanl()

atan Function
Purpose Computes the arc-tangent of x.

Declared In posix/math.h

Prototype double atan (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

math.h
atan2f

Palm OS Protein C/C++ Compiler Language and Library Reference 75

Returns Returns the arc-tangent of x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also acos(), asin(), atan2()

atan2 Function
Purpose Computes the arc-tangent of y/x.

Declared In posix/math.h

Prototype double atan2 (double y, double x)

Parameters → y
Value of type double to be evaluated.

→ x
Value of type double to be evaluated.

Returns Returns the arc-tangent of y/x, a value within the range of -π/2 to
+π/2 (inclusive).

Comments Both x and y cannot be zero (0).

Compatibility This function is in the C99 specification.

See Also atan()

atan2f Function
Purpose Computes the arc-tangent of y/x.

Declared In posix/math.h

Prototype float atan2f (float y, float x)

Parameters → y
Value of type float to be evaluated.

→ x
Value of type float to be evaluated.

Returns Returns the arc-tangent of y/x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also atanf()

math.h
atan2l

76 Palm OS Protein C/C++ Compiler Language and Library Reference

atan2l Function
Purpose Computes the arc-tangent of y/x.

Declared In posix/math.h

Prototype long double atan2l (long double y, long double x)

Parameters → y
Value of type long double to be evaluated.

→ x
Value of type long double to be evaluated.

Returns Returns the arc-tangent of y/x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also atanl()

atanf Function
Purpose Computes the arc-tangent of x.

Declared In posix/math.h

Prototype float atanf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the arc-tangent of x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also acosf(), asinf(), atan2f()

math.h
cbrt

Palm OS Protein C/C++ Compiler Language and Library Reference 77

atanh Function
Purpose Computes the inverse hyperbolic tangent of x.

Declared In posix/math.h

Prototype double atanh (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the inverse hyperbolic tangent of x, a value without a range
limit.

Compatibility This function is in the C99 specification.

See Also acosh(), asinh()

atanl Function
Purpose Computes the arc-tangent of x.

Declared In posix/math.h

Prototype long double atanl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the arc-tangent of x, a value within the range of -π/2 to
+π/2 (inclusive).

Compatibility This function is in the C99 specification.

See Also acosl(), asinl(), atan2l()

cbrt Function
Purpose Computes the cube root of x.

Declared In posix/math.h

Prototype double cbrt (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the cube root of x.

Compatibility This function is in the C99 specification.

math.h
ceil

78 Palm OS Protein C/C++ Compiler Language and Library Reference

ceil Function
Purpose Computes the smallest integer not less than x.

Declared In posix/math.h

Prototype double ceil (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the smallest integer not less than x, a value without a range
limit.

Compatibility This function is in the C99 specification.

See Also ceilf(), ceill()

ceilf Function
Purpose Computes the smallest integer not less than x.

Declared In posix/math.h

Prototype float ceilf (float x)

Parameters → x
Value of type float to be evaluated. The value of x has no
range limit.

Returns Returns the smallest integer not less than x, a value without a range
limit.

Compatibility This function is in the C99 specification.

See Also ceil(), ceill()

ceill Function
Purpose Computes the smallest integer not less than x.

Declared In posix/math.h

Prototype long double ceill (long double x)

Parameters → x
Value of type long double to be evaluated.

math.h
cos

Palm OS Protein C/C++ Compiler Language and Library Reference 79

Returns Returns the smallest integer not less than x, a value without a range
limit.

Compatibility This function is in the C99 specification.

See Also ceil(), ceilf()

copysign Function
Purpose Returns x with its sign changed to y’s.

Declared In posix/math.h

Prototype double copysign (double x, double y)

Parameters → x
Value of type double to be changed.

→ y
Value of type double to be evaluated.

Returns Returns the value of x with its sign changed to y’s.

Compatibility This function is in the C99 specification.

cos Function
Purpose Computes the cosine of x.

Declared In posix/math.h

Prototype double cos (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the cosine of x, a value within the range of -1 to +1
(inclusive).

Compatibility This function is in the C99 specification.

See Also sin(), tan()

math.h
cosf

80 Palm OS Protein C/C++ Compiler Language and Library Reference

cosf Function
Purpose Computes the cosine of x.

Declared In posix/math.h

Prototype float cosf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the cosine of x, a value within the range of -1 to +1
(inclusive).

Compatibility This function is in the C99 specification.

See Also sinf(), tanf()

cosh Function
Purpose Computes the hyperbolic cosine of x.

Declared In posix/math.h

Prototype double cosh (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the hyperbolic cosine of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also sinh(), tanh()

coshf Function
Purpose Computes the hyperbolic cosine of x.

Declared In posix/math.h

Prototype float coshf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the hyperbolic cosine of x, a value without a range limit.

math.h
exp

Palm OS Protein C/C++ Compiler Language and Library Reference 81

Compatibility This function is in the C99 specification.

See Also sinhf(), tanhf()

coshl Function
Purpose Computes the hyperbolic cosine of x.

Declared In posix/math.h

Prototype long double coshl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the hyperbolic cosine of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also sinhl(), tanhl()

cosl Function
Purpose Computes the cosine of x.

Declared In posix/math.h

Prototype long double cosl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the cosine of x, a value within the range of -1 to +1
(inclusive).

Compatibility This function is in the C99 specification.

See Also asinl(), atanl()

exp Function
Purpose Computes the exponential of x.

Declared In posix/math.h

Prototype double exp (double x)

math.h
expf

82 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → x
Value of type double to be evaluated.

Returns Returns the exponential of x.

Compatibility This function is in the C99 specification.

See Also expf(), expl(), expm1()

expf Function
Purpose Computes the exponential of x.

Declared In posix/math.h

Prototype float expf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the exponential of x.

Comments The global variable errno does not get set when underflow occurs.

Compatibility This function is in the C99 specification.

See Also exp(), expl()

expl Function
Purpose Computes the exponential of x.

Declared In posix/math.h

Prototype long double expl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the exponential of x.

Compatibility This function is in the C99 specification.

See Also exp(), expf()

math.h
fabsf

Palm OS Protein C/C++ Compiler Language and Library Reference 83

expm1 Function
Purpose Computes the value of exp(x)-1 accurately even for tiny argument

x.

Declared In posix/math.h

Prototype double expm1 (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the value of exp(x)-1.

Compatibility This function is in the C99 specification.

See Also exp()

fabs Function
Purpose Computes the absolute value of x.

Declared In posix/math.h

Prototype double fabs (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the absolute value of x.

Compatibility This function is in the C99 specification.

See Also fabsf(), fabsl()

fabsf Function
Purpose Computes the absolute value of x.

Declared In posix/math.h

Prototype float fabsf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the absolute value of x.

Compatibility This function is in the C99 specification.

See Also fabs(), fabsl()

math.h
fabsl

84 Palm OS Protein C/C++ Compiler Language and Library Reference

fabsl Function
Purpose Computes the absolute value of x.

Declared In posix/math.h

Prototype long double fabsl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the absolute value of x.

Compatibility This function is in the C99 specification.

See Also fabs(), fabsf()

floor Function
Purpose Computes the largest integer not greater than x.

Declared In posix/math.h

Prototype double floor (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the largest integer not greater than x.

Compatibility This function is in the C99 specification.

See Also floorf(), floorl()

floorf Function
Purpose Computes the largest integer not greater than x.

Declared In posix/math.h

Prototype float floorf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the largest integer not greater than x.

Compatibility This function is in the C99 specification.

See Also floor(), floorl()

math.h
fmod

Palm OS Protein C/C++ Compiler Language and Library Reference 85

floorl Function
Purpose Computes the largest integer not greater than x.

Declared In posix/math.h

Prototype long double floorl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the largest integer not greater than x.

Compatibility This function is in the C99 specification.

See Also floor(), floorf()

fmod Function
Purpose Computes the floating-point remainder of x/y with same sign as x

(if y is non-zero). If y is zero (0), the result is implementation-
defined.

Declared In posix/math.h

Prototype double fmod (double x, double y)

Parameters → x
Value of type double to be evaluated.

→ y
Value of type double to be evaluated.

Returns Returns the floating-point remainder, unless y is zero (0).

Compatibility This function is in the C99 specification.

See Also fmodf(), fmodl()

math.h
fmodf

86 Palm OS Protein C/C++ Compiler Language and Library Reference

fmodf Function
Purpose Computes the floating-point remainder of x/y with same sign as x

(if y is non-zero). If y is zero (0), the result is implementation-
defined.

Declared In posix/math.h

Prototype float fmodf (float x, float y)

Parameters → x
Value of type float to be evaluated.

→ y
Value of type float to be evaluated.

Returns Returns the floating-point remainder, unless y is zero (0).

Compatibility This function is in the C99 specification.

See Also fmod(), fmodl()

fmodl Function
Purpose Computes the floating-point remainder of x/y with same sign as x

(if y is non-zero). If y is zero (0), the result is implementation-
defined.

Declared In posix/math.h

Prototype long double fmodl (long double x, long double y)

Parameters → x
Value of type long double to be evaluated.

→ y
Value of type long double to be evaluated.

Returns Returns the floating-point remainder, unless y is zero (0).

Compatibility This function is in the C99 specification.

See Also fmod(), fmodf()

math.h
frexp

Palm OS Protein C/C++ Compiler Language and Library Reference 87

fpclassify Macro
Purpose Classifies its argument value as NaN, infinite, normal, subnormal,

zero, or into another implementation-defined category.

Declared In posix/math.h

Prototype #define fpclssify (real-floating x)

Parameters → x
Value of type real floating to be evaluated.

Returns Returns the value of the number classification macro appropriate to
the value of its argument.

Compatibility This function is in the C99 specification; see classification macros
section 7.12.3 in the standards document.

See Also signbit(), isinf(), isnan(), isnormal(), signbit()

frexp Function
Purpose Breaks up the floating-point number x into a mantissa and

exponent.

Declared In posix/math.h

Prototype double frexp (double x, int *exp)

Parameters → x
Value of type double to be evaluated.

→ exp
Value of type int to be evaluated. The mantissa and the
integer pointed to by exp is the exponent.

Returns Returns the value of x=mantissa * 2^exp, unless x is zero (0). If x is
zero, both *exp and the result are zero.

Compatibility This function is in the C99 specification.

See Also frexpf(), frexpl()

math.h
frexpf

88 Palm OS Protein C/C++ Compiler Language and Library Reference

frexpf Function
Purpose Breaks up the floating-point number x into a mantissa and

exponent.

Declared In posix/math.h

Prototype float frexpf (float value, int *exp)

Parameters → value
Value of type float to be evaluated.

→ exp
Value of type int to be evaluated. The mantissa and the
integer pointed to by exp is the exponent.

Returns Returns the value of x=mantissa * 2^exp, unless x is zero (0). If x is
zero, both *exp and the result are zero.

Compatibility This function is in the C99 specification.

See Also frexp(), frexpl()

frexpl Function
Purpose Breaks up the floating-point number x into a mantissa and

exponent.

Declared In posix/math.h

Prototype long double frexpl (long double value, int *exp)

Parameters → value
Value of type long double to be evaluated.

→ exp
Value of type int to be evaluated. The mantissa and the
integer pointed to by exp is the exponent.

Returns Returns the value of x=mantissa * 2^exp, unless x is zero (0). If x is
zero, both *exp and the result are zero.

Compatibility This function is in the C99 specification.

See Also frexp(), frexpf()

math.h
hypotf

Palm OS Protein C/C++ Compiler Language and Library Reference 89

hypot Function
Purpose Computes the sqrt(x*x+y*y) in such a way that underflow does

not happen, and overflow occurs only if the final result deserves it.

Declared In posix/math.h

Prototype double hypot (double x, double y)

Parameters → x
Value of type double to be evaluated.

→ y
Value of type double to be evaluated.

Returns Returns the value of sqrt(x*x+y*y).

Compatibility This function is in the C99 specification.

See Also hypotf(), hypotl()

hypotf Function
Purpose Computes the sqrt(x*x+y*y) in such a way that underflow does

not happen, and overflow occurs only if the final result deserves it.

Declared In posix/math.h

Prototype float hypot (float x, float y)

Parameters → x
Value of type float to be evaluated.

→ y
Value of type float to be evaluated.

Returns Returns the value of sqrt(x*x+y*y).

Compatibility This function is in the C99 specification.

See Also hypot(), hypotl()

math.h
hypotl

90 Palm OS Protein C/C++ Compiler Language and Library Reference

hypotl Function
Purpose Computes the sqrt(x*x+y*y) in such a way that underflow does

not happen, and overflow occurs only if the final result deserves it.

Declared In posix/math.h

Prototype long double hypotl (long double x, long double y)

Parameters → x
Value of type long double to be evaluated.

→ y
Value of type long double to be evaluated.

Returns Returns the value of sqrt(x*x+y*y).

Compatibility This function is in the C99 specification.

See Also hypot(), hypotf()

ilogb Function
Purpose Computes x’s exponent n.

Declared In posix/math.h

Prototype int ilogb (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the value of x’s exponent n, in integer format.

Compatibility This function is in the C99 specification.

See Also logb()

isfinite Macro
Purpose Tests for finite value (zero, subnormal, or normal, and not infinite or

NaN).

Declared In posix/math.h

Prototype #define isfinite (real-floating x)

Parameters → x
Value of type real floating to be evaluated.

math.h
isnan

Palm OS Protein C/C++ Compiler Language and Library Reference 91

Returns Returns a non-zero value if and only if x has a finite value.

Compatibility This function is in the C99 specification; see classification macros
section 7.12.3 in the standards document.

See Also fpclassify(), isinf(), isnan(), isnormal(), signbit()

isinf Macro
Purpose Tests for infinity (positive or negative).

Declared In posix/math.h

Prototype #define isinf (real-floating x)

Parameters → x
Value of type real floating to be evaluated.

Returns Returns a non-zero value if and only if x has an infinite value.

Compatibility This function is in the C99 specification; see classification macros
section 7.12.3 in the standards document.

See Also fpclassify(), signbit(), isnan(), isnormal(),
signbit()

isnan Macro
Purpose Tests for a NaN (not a number).

Declared In posix/math.h

Prototype #define isnan (real-floating x)

Parameters → x
Value of type real floating to be evaluated.

Returns Returns a non-zero value if and only if x has a NaN value.

Compatibility This function is in the C99 specification; see classification macros
section 7.12.3 in the standards document.

See Also fpclassify(), signbit(), isinf(), isnormal(),
signbit()

math.h
isnormal

92 Palm OS Protein C/C++ Compiler Language and Library Reference

isnormal Macro
Purpose Tests for a normal value (neither zero, subnormal, infinite, nor

NaN).

Declared In posix/math.h

Prototype #define isnormal (real-floating x)

Parameters → x
Value of type real floating to be evaluated.

Returns Returns a non-zero value if and only if x has a normal value.

Compatibility This function is in the C99 specification; see classification macros
section 7.12.3 in the standards document.

See Also fpclassify(), signbit(), isinf(), isnan(), signbit()

ldexp Function
Purpose Computes x multiplied by 2 to the power n.

Declared In posix/math.h

Prototype double ldexp (double x, int n)

Parameters → x
Value of type double to be evaluated.

→ n
Value of type int to be evaluated.

Returns Returns the value of x multiplied by 2 to the power n.

Compatibility This function is in the C99 specification.

See Also ldexpf(), ldexpl()

ldexpf Function
Purpose Computes x multiplied by 2 to the power n.

Declared In posix/math.h

Prototype float ldexpf (float x, int exp)

Parameters → x
Value of type float to be evaluated.

math.h
log

Palm OS Protein C/C++ Compiler Language and Library Reference 93

→ exp
Value of type int to be evaluated.

Returns Returns the value of x multiplied by 2 to the power exp.

Compatibility This function is in the C99 specification.

See Also ldexp(), ldexpl()

ldexpl Function
Purpose Computes x multiplied by 2 to the power n.

Declared In posix/math.h

Prototype long double ldexpl (long double x, int exp)

Parameters → x
Value of type long double to be evaluated.

→ exp
Value of type int to be evaluated.

Returns Returns the value of x multiplied by 2 to the power exp.

Compatibility This function is in the C99 specification.

See Also ldexp(), ldexpf()

log Function
Purpose Computes the natural logarithm of x.

Declared In posix/math.h

Prototype double log (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the natural logarithm of x.

Compatibility This function is in the C99 specification.

See Also logf(), logl()

math.h
log10

94 Palm OS Protein C/C++ Compiler Language and Library Reference

log10 Function
Purpose Computes the base-10 logarithm of x.

Declared In posix/math.h

Prototype double log10 (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the base-10 logarithm of x.

Compatibility This function is in the C99 specification.

See Also log10f(), log10l()

log10f Function
Purpose Computes the base-10 logarithm of x.

Declared In posix/math.h

Prototype float log10f (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the base-10 logarithm of x.

Compatibility This function is in the C99 specification.

See Also log10(), log10l()

log10l Function
Purpose Computes the base-10 logarithm of x.

Declared In posix/math.h

Prototype long double log10l (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the base-10 logarithm of x.

Compatibility This function is in the C99 specification.

See Also log10(), log10f()

math.h
logf

Palm OS Protein C/C++ Compiler Language and Library Reference 95

log1p Function
Purpose Computes the value of log(1+x) accurately even for tiny argument

x.

Declared In posix/math.h

Prototype double log1p (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the value of log(1+x).

Compatibility This function is in the C99 specification.

See Also log()

logb Function
Purpose Computes x’s exponent n, a signed integer converted to double-

precision floating-point.

Declared In posix/math.h

Prototype double logb (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the value of x’s exponent n, in double format.

Compatibility This function is in the C99 specification.

See Also ilogb()

logf Function
Purpose Computes the natural logarithm of x.

Declared In posix/math.h

Prototype float logf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the natural logarithm of x.

math.h
logl

96 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is in the C99 specification.

See Also log(), logl()

logl Function
Purpose Computes the natural logarithm of x.

Declared In posix/math.h

Prototype long double logl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the natural logarithm of x.

Compatibility This function is in the C99 specification.

See Also log(), logf()

modf Function
Purpose Computes the fractional part and assigns to ip the integral part of

x, both with same sign as x.

Declared In posix/math.h

Prototype double modf (double x, double *ip)

Parameters → x
Value of type double to be evaluated.

→ ip
Value of type double to be evaluated.

Returns Returns the signed fractional part.

Compatibility This function is in the C99 specification.

See Also modff(), modfl()

math.h
modfl

Palm OS Protein C/C++ Compiler Language and Library Reference 97

modff Function
Purpose Computes the fractional part and assigns to ip the integral part of

x, both with same sign as x.

Declared In posix/math.h

Prototype float modff (float value, float *iptr)

Parameters → value
Value of type float to be evaluated.

→ iptr
Value of type float to be evaluated.

Returns Returns the signed fractional part.

Compatibility This function is in the C99 specification.

See Also modf(), modfl()

modfl Function
Purpose Computes the fractional part and assigns to ip the integral part of

x, both with same sign as x.

Declared In posix/math.h

Prototype long double modfl (long double value,
long double *iptr)

Parameters → value
Value of type long double to be evaluated.

→ iptr
Value of type long double to be evaluated.

Returns Returns the signed fractional part.

Compatibility This function is in the C99 specification.

See Also modf(), modff()

math.h
nextafter

98 Palm OS Protein C/C++ Compiler Language and Library Reference

nextafter Function
Purpose Computes the next machine representable number from x in

direction y.

Declared In posix/math.h

Prototype double nextafter (double x, double y)

Parameters → x
Value of type double to be evaluated.

→ y
Value of type double to be evaluated.

Returns Returns the next machine representable number from x in direction
y.

Compatibility This function is in the C99 specification.

pow Function
Purpose Computes x raised to power y.

Declared In posix/math.h

Prototype double pow (double x, double y)

Parameters → x
Value of type double to be evaluated.

→ y
Value of type double to be evaluated.

Returns Returns the value of x raised to power y.

Comments pow(infinity, infinity) sets the global variable errno to
ERANGE.

Compatibility This function is in the C99 specification.

See Also powf(), powl()

math.h
powl

Palm OS Protein C/C++ Compiler Language and Library Reference 99

powf Function
Purpose Computes x raised to power y.

Declared In posix/math.h

Prototype float powf (float x, float y)

Parameters → x
Value of type float to be evaluated.

→ y
Value of type float to be evaluated.

Returns Returns the value of x raised to power y.

Compatibility This function is in the C99 specification.

See Also pow(), powl()

powl Function
Purpose Computes x raised to power y.

Declared In posix/math.h

Prototype long double powl (long double x, long double y)

Parameters → x
Value of type long double to be evaluated.

→ y
Value of type long double to be evaluated.

Returns Returns the value of x raised to power y.

Compatibility This function is in the C99 specification.

See Also pow(), powf()

math.h
remainder

100 Palm OS Protein C/C++ Compiler Language and Library Reference

remainder Function
Purpose Computes the remainder r := x - n*y where n is the integer nearest

the exact value of x/y.

Declared In posix/math.h

Prototype double remainder (double x, double y)

Parameters → x
Value of type double to be evaluated.

→ y
Value of type double to be evaluated.

Returns Returns the remainder.

Compatibility This function is in the C99 specification.

rint Function
Purpose Rounds x to integral value in floating-point format.

Declared In posix/math.h

Prototype double rint (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the integral value (represented as a double precision
number) nearest to x according to the prevailing rounding mode.

Compatibility This function is in the C99 specification.

scalbn Function
Purpose Computes x*(2**n) by exponent manipulation.

Declared In posix/math.h

Prototype double scalbn (double x, int n)

Parameters → x
Value of type double to be evaluated.

→ n
Value of type int to be evaluated.

math.h
sin

Palm OS Protein C/C++ Compiler Language and Library Reference 101

Returns Returns the value of x*(2**n).

Compatibility This function is in the C99 specification.

signbit Macro
Purpose Tests for a negative sign. (NaNs, zeros, and infinities have a sign

bit.)

Declared In posix/math.h

Prototype #define signbit (real-floating x)

Parameters → x
Value of type real floating to be evaluated.

Returns Returns a non-zero value if and only if the sign of x is negative.

Compatibility This function is in the C99 specification; see classification macros
section 7.12.3 in the standards document.

See Also fpclassify(), signbit(), isinf(), isnan(), isnormal()

sin Function
Purpose Computes the sine of x.

Declared In posix/math.h

Prototype double sin (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the sine of x, a value within the range of -1 to +1 (inclusive).

Compatibility This function is in the C99 specification.

See Also cos(), tan()

math.h
sinf

102 Palm OS Protein C/C++ Compiler Language and Library Reference

sinf Function
Purpose Computes the sine of x.

Declared In posix/math.h

Prototype float sinf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the sine of x, a value within the range of -1 to +1 (inclusive).

Compatibility This function is in the C99 specification.

See Also cosf(), tanf()

sinh Function
Purpose Computes the hyperbolic sine of x.

Declared In posix/math.h

Prototype double sinh (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the hyperbolic sine of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also cosh(), tanh()

sinhf Function
Purpose Computes the hyperbolic sine of x.

Declared In posix/math.h

Prototype float sinhf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the hyperbolic sine of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also coshf(), tanhf()

math.h
sqrt

Palm OS Protein C/C++ Compiler Language and Library Reference 103

sinhl Function
Purpose Computes the hyperbolic sine of x.

Declared In posix/math.h

Prototype long double sinhl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the hyperbolic sine of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also coshl(), tanhl()

sinl Function
Purpose Computes the sine of x.

Declared In posix/math.h

Prototype long double sinl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the sine of x, a value within the range of -1 to +1 (inclusive).

Compatibility This function is in the C99 specification.

See Also cosl(), tanl()

sqrt Function
Purpose Computes the non-negative square root of x.

Declared In posix/math.h

Prototype double sqrt (double x)

Parameters → x
Value of type double to be evaluated.

Returns Returns the non-negative square root of x.

Compatibility This function is in the C99 specification.

See Also sqrtf(), sqrtl()

math.h
sqrtf

104 Palm OS Protein C/C++ Compiler Language and Library Reference

sqrtf Function
Purpose Computes the non-negative square root of x.

Declared In posix/math.h

Prototype float sqrtf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the non-negative square root of x.

Compatibility This function is in the C99 specification.

See Also sqrt(), sqrtl()

sqrtl Function
Purpose Computes the non-negative square root of x.

Declared In posix/math.h

Prototype long double sqrtl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the non-negative square root of x.

Compatibility This function is in the C99 specification.

See Also sqrt(), sqrtf()

tan Function
Purpose Computes the tangent of x.

Declared In posix/math.h

Prototype double tan (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the tangent of x, a value within the range of -1 to +1
(inclusive).

math.h
tanh

Palm OS Protein C/C++ Compiler Language and Library Reference 105

Compatibility This function is in the C99 specification.

See Also cos(), sin()

tanf Function
Purpose Computes the tangent of x.

Declared In posix/math.h

Prototype float tanf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the tangent of x, a value within the range of -1 to +1
(inclusive).

Compatibility This function is in the C99 specification.

See Also cosf(), sinf()

tanh Function
Purpose Computes the hyperbolic tangent of x.

Declared In posix/math.h

Prototype double tanh (double x)

Parameters → x
Value of type double to be evaluated. The value of x has no
range limit.

Returns Returns the hyperbolic tangent of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also cosh(), sinh()

math.h
tanhf

106 Palm OS Protein C/C++ Compiler Language and Library Reference

tanhf Function
Purpose Computes the hyperbolic tangent of x.

Declared In posix/math.h

Prototype float tanhf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the hyperbolic tangent of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also coshf(), sinhf()

tanhl Function
Purpose Computes the hyperbolic tangent of x.

Declared In posix/math.h

Prototype long double tanhl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the hyperbolic tangent of x, a value without a range limit.

Compatibility This function is in the C99 specification.

See Also coshl(), sinhl()

tanl Function
Purpose Computes the tangent of x.

Declared In posix/math.h

Prototype long double tanl (long double x)

Parameters → x
Value of type long double to be evaluated.

Returns Returns the tangent of x, a value within the range of -1 to +1
(inclusive).

Compatibility This function is in the C99 specification.

See Also cosl(), sinl()

math.h
tanl

Palm OS Protein C/C++ Compiler Language and Library Reference 107

math.h
tanl

108 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 109

16
netdb.h
The <netdb.h> header defines functions useful for network
database operations.

Structures and Types

addrinfo Struct
Purpose This structure contains the information obtained from the address.

Declared In posix/netdb.h

Prototype struct addrinfo {
 int ai_flags;
 int ai_family;
 int ai_socktype;
 int ai_protocol;
 size_t ai_addrlen;
 char *ai_canonname;
 struct sockaddr *ai_addr;
 struct addrinfo *ai_next;
}

Fields ai_flags
AI_PASSIVE, AI_CANONNAME, AI_NUMERICHOST.

ai_family
PF_xxx.

ai_socktype
SOCK_xxx.

ai_protocol
0 or IPPROTO_xxx for IPv4 and IPv6.

ai_addrlen
The length of ai_addr.

netdb.h
hostent

110 Palm OS Protein C/C++ Compiler Language and Library Reference

ai_canonname
Canonical name for hostname.

ai_addr
Binary address.

ai_next
Next structure in linked list.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

hostent Struct
Purpose This structure contains either the information obtained from the

name server or database entries supplied by the system.

Declared In posix/netdb.h

Prototype struct hostent {
 char *h_name;
 char **h_aliases;
 int h_addrtype;
 int h_length;
 char **h_addr_list;
}

Fields h_name
Official name of the host.

h_aliases
A list of alternative names for the host.

h_addrtype
Host address type.

h_length
The length, in bytes, of the address.

h_addr_list
List of addresses from name server.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

netdb.h
protoent

Palm OS Protein C/C++ Compiler Language and Library Reference 111

netent Struct
Purpose This structure contains the information obtained from the network.

Declared In posix/netdb.h

Prototype struct netent {
 char *n_name;
 char **n_aliases;
 int n_addrtype;
 unsigned long n_net;
}

Fields n_name
Official name of the network.

n_aliases
A list of alternative names for the network.

n_addrtype
Network address type.

n_net
The network number.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

protoent Struct
Purpose This structure contains the information obtained from the protocol.

Declared In posix/netdb.h

Prototype struct protoent {
 char *p_name;
 char **p_aliases;
 int p_proto;
}

Fields p_name
Official name of the protocol.

p_aliases
A list of alternative names for the protocol.

p_proto
The protocol number.

netdb.h
servent

112 Palm OS Protein C/C++ Compiler Language and Library Reference

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

servent Struct
Purpose This structure contains the information obtained from the service.

Declared In posix/netdb.h

Prototype struct servent {
 char *s_name;
 char **s_aliases;
 int s_port;
 char *s_proto;
}

Fields s_name
Official name of the service.

s_aliases
A list of alternative names for the service.

s_port
The port number.

s_proto
The protocol to use.

Comments All addresses are supplied in host order and returned in network
order (suitable for use in system calls).

Functions and Macros

endhostent Function
Purpose Closes the TCP connection.

Declared In posix/netdb.h

Prototype void endhostent (void)

Compatibility This function is not in the C99 specification.

netdb.h
freeaddrinfo

Palm OS Protein C/C++ Compiler Language and Library Reference 113

endnetent Function
Purpose Closes the connection to the database, releasing any open file

descriptor.

Declared In posix/netdb.h

Prototype void endnetent (void)

Compatibility This function is not in the C99 specification.

endprotoent Function
Purpose Closes the connection to the database, releasing any open file

descriptor.

Declared In posix/netdb.h

Prototype void endprotoent (void)

Compatibility This function is not in the C99 specification.

endservent Function
Purpose Closes the connection to the database, releasing any open file

descriptor.

Declared In posix/netdb.h

Prototype void endservent (void)

Compatibility This function is not in the C99 specification.

freeaddrinfo Function
Purpose Returns the socket address structures and canonical node name

strings pointed to by the addrinfo structures.

Declared In posix/netdb.h

Prototype void freeaddrinfo (struct addrinfo *ai)

Parameters → ai
The addrinfo structure pointed to by the ai argument is
freed, along with any dynamic storage pointed to by the

netdb.h
freehostent

114 Palm OS Protein C/C++ Compiler Language and Library Reference

structure. This operation is repeated until a NULL ai_next
pointer is encountered.

Compatibility This function is not in the C99 specification.

freehostent Function
Purpose Releases the dynamically allocated memory of the hostent

structure.

Returns Returns a pointer to an object of the hostent structure.

Declared In posix/netdb.h

Prototype void freehostent (struct hostent *ip)

Parameters → ip
A pointer to an object of the hostent structure.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

gai_strerror Function
Purpose Aids applications in printing error messages based on the EAI_xxx

codes.

Declared In posix/netdb.h

Prototype const char *gai_strerror (int ecode)

Parameters → ecode
An EAI_xxx code, such as EAI_ADDRFAMILY.

Returns Returns a pointer to a string whose contents indicate an unknown
error.

Compatibility This function is not in the C99 specification.

netdb.h
getaddrinfo

Palm OS Protein C/C++ Compiler Language and Library Reference 115

getaddrinfo Function
Purpose Protocol-independent nodename-to-address translation.

Declared In posix/netdb.h

Prototype int getaddrinfo (const char *nodename,
const char *servname,
const struct addrinfo *hints,
struct addrinfo **res)

Parameters → nodename
A pointer to null-terminated strings or NULL.

→ servname
A pointer to null-terminated strings or NULL.

→ hints
Hints concerning the type of socket that the caller supports.

← res
A pointer to a linked list of one or more addrinfo
structures.

Returns Returns a set of socket addresses and associated information to be
used in creating a socket with which to address the specified
service.

Comments One or both of the nodename and servname parameters must be a
non-NULL pointer.

If nodename is not NULL, the requested service location is named by
nodename; otherwise, the requested service location is local to the
caller. If servname is NULL, the call returns network-level
addresses for the specified nodename. If servname is not NULL, it
is a null-terminated character string identifying the requested
service.

Compatibility This function is not in the C99 specification.

See Also gethostbyname(), getservbyname()

netdb.h
gethostbyaddr

116 Palm OS Protein C/C++ Compiler Language and Library Reference

gethostbyaddr Function
Purpose Searches for the specified host in the current domain and its parents

unless the name ends in a dot.

Declared In posix/netdb.h

Prototype struct hostent *gethostbyaddr (const char *addr,
int len, int type)

Parameters → addr
Host address type.

→ len
The length, in bytes, of the address.

→ type
A named constant that indicates the naming scheme under
which the lookup is performed. Must be specified as
AF_INET.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by address.

Compatibility This function is not in the C99 specification.

gethostbyname Function
Purpose Searches for the specified host in the current domain and its parents

unless the name ends in a dot.

Declared In posix/netdb.h

Prototype struct hostent *gethostbyname (const char *name)

Parameters → name
Official name of the host.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by name.

Compatibility This function is not in the C99 specification.

netdb.h
getipnodebyaddr

Palm OS Protein C/C++ Compiler Language and Library Reference 117

gethostbyname2 Function
Purpose An evolution of gethostbyname() that allows lookups in address

families other than AF_INET.

Declared In posix/netdb.h

Prototype struct hostent *gethostbyname2 (const char *name,
int af)

Parameters → name
Official name of the host.

→ af
Must be specified as AF_INET or AF_INET6.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by name.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

gethostent Function
Purpose Reads the next entry in the database, opening and closing a

connection to the database as necessary.

Declared In posix/netdb.h

Prototype struct hostent *gethostent (void)

Returns Returns a pointer to an object of the hostent structure.

Compatibility This function is not in the C99 specification.

getipnodebyaddr Function
Purpose Returns the address of a network host.

Declared In posix/netdb.h

Prototype struct hostent *getipnodebyaddr (const void *src,
size_t len, int af, int *error_num)

Parameters → src
The name of the host whose network address to look up.

netdb.h
getipnodebyname

118 Palm OS Protein C/C++ Compiler Language and Library Reference

→ len
The length, in bytes, of the address.

→ af
Must be specified as AF_INET or AF_INET6.

← error_num
A NULL pointer is returned if an error occurred, and
error_num contains an error code from the following list:
HOST_NOT_FOUND, NO_ADDRESS, NO_RECOVERY, or
TRY_AGAIN.

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by address.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

getipnodebyname Function
Purpose Returns the name of a network host.

Declared In posix/netdb.h

Prototype struct hostent *getipnodebyname
(const char *name, int af, int flags,
int *error_num)

Parameters → name
Official name of the host.

→ af
Must be specified as AF_INET or AF_INET6.

→ flags
Specifies additional options: AI_V4MAPPED, AI_ALL, or
AI_ADDRCONFIG. More than one option can be specified by
logically ORing them together. flags should be set to zero
(0) if no options are desired.

← error_num
A NULL pointer is returned if an error occurred, and
error_num contains an error code from the following list:
HOST_NOT_FOUND, NO_ADDRESS, NO_RECOVERY, or
TRY_AGAIN.

netdb.h
getnameinfo

Palm OS Protein C/C++ Compiler Language and Library Reference 119

Returns Returns a pointer to an object of the hostent structure, describing
an Internet host referenced by name.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

getnameinfo Function
Purpose Translates address-to-nodename in a protocol-independent manner.

Declared In posix/netdb.h

Prototype int getnameinfo (const struct sockaddr *sa,
size_t salen, char *host, size_t hostlen,
char *serv, size_t servlen, int flags)

Parameters → sa
A sockaddr structure.

→ salen
The length, in bytes, of the sockaddr structure.

→ host
The buffer that holds the IP address.

→ hostlen
The length, in bytes, of the IP address buffer.

→ serv
The buffer that holds the port number.

→ servlen
The length, in bytes, of the port number buffer.

→ flags
Changes the default actions of this function.

Returns Returns text strings for the IP address and port number in user-
provided buffers.

Compatibility This function is not in the C99 specification.

netdb.h
getnetbyaddr

120 Palm OS Protein C/C++ Compiler Language and Library Reference

getnetbyaddr Function
Purpose Searches from the beginning of the file until a matching network

address is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct netent *getnetbyaddr (unsigned long net,
int type)

Parameters → net
The network number.

→ type
Network address type.

Returns Returns a pointer to an object of the netent structure, describing
the network database.

Compatibility This function is not in the C99 specification.

getnetbyname Function
Purpose Searches from the beginning of the file until a matching network

name is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct netent *getnetbyname (const char *name)

Parameters → name
Official name of the network.

Returns Returns a pointer to an object of the netent structure, describing
the network database.

Compatibility This function is not in the C99 specification.

getnetent Function
Purpose Reads the next line of the file, opening the file if necessary.

Declared In posix/netdb.h

Prototype struct netent *getnetent (void)

Returns Returns a pointer to an object of the netent structure, describing
the network database.

Compatibility This function is not in the C99 specification.

netdb.h
getprotoent

Palm OS Protein C/C++ Compiler Language and Library Reference 121

getprotobyname Function
Purpose Sequentially searches from the beginning of the file until a matching

protocol name is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct protoent *getprotobyname
(const char *name)

Parameters → name
Official name of the protocol.

Returns Returns a pointer to an object of the protoent structure, describing
the network database.

Compatibility This function is not in the C99 specification.

getprotobynumber Function
Purpose Sequentially searches from the beginning of the file until a matching

protocol number is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct protoent *getprotobynumber (int proto)

Parameters → proto
Official name of the protocol.

Returns Returns a pointer to an object of the protoent structure, describing
the network database.

Compatibility This function is not in the C99 specification.

getprotoent Function
Purpose Reads the next line of the file, opening the file if necessary.

Declared In posix/netdb.h

Prototype struct protoent *getprotoent (void)

Returns Returns a pointer to an object of the protoent structure, describing
the network database.

Compatibility This function is not in the C99 specification.

netdb.h
getservbyname

122 Palm OS Protein C/C++ Compiler Language and Library Reference

getservbyname Function
Purpose Searches from the beginning of the file until a matching protocol

name is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct servent *getservbyname (const char *name,
const char *proto)

Parameters → name
Official name of the network.

→ proto
The protocol.

Returns Returns a pointer to an object of the servent structure, describing
the network services database.

Compatibility This function is not in the C99 specification.

getservbyport Function
Purpose Searches from the beginning of the file until a matching port

number is found, or until EOF is encountered.

Declared In posix/netdb.h

Prototype struct servent *getservbyport (int port,
const char *proto)

Parameters → port
The port number.

→ proto
The protocol to use

Returns Returns a pointer to an object of the servent structure, describing
the network services database.

Compatibility This function is not in the C99 specification.

netdb.h
sethostent

Palm OS Protein C/C++ Compiler Language and Library Reference 123

getservent Function
Purpose Reads the next line of the file, opening the file if necessary.

Declared In posix/netdb.h

Prototype struct servent *getservent (void)

Returns Returns a pointer to an object of the servent structure, describing
the network services database.

Compatibility This function is not in the C99 specification.

hstrerror Function
Purpose Returns a string that is the message text corresponding to the value

of the err parameter.

Declared In posix/netdb.h

Prototype const char *hstrerror (int err)

Parameters → err
The error.

Returns Returns a string that is the message text corresponding to the value
of the err parameter.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

sethostent Function
Purpose Requests the use of a connected TCP socket for queries.

Declared In posix/netdb.h

Prototype void sethostent (int stayopen)

Parameters → stayopen
If the stayopen flag is non-zero, sets the option to send all
queries to the name server using TCP and to retain the
connection after each call to gethostbyname(),
gethostbyname2(), or gethostbyaddr(). Otherwise,
queries are performed using UDP datagrams.

netdb.h
setnetent

124 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is not in the C99 specification.

See Also gethostbyaddr(), gethostbyname(), gethostbyname2()

setnetent Function
Purpose Opens and rewinds a file.

Declared In posix/netdb.h

Prototype void setnetent (int stayopen)

Parameters → stayopen
If non-zero, the network database is not closed after each call
to getnetbyname() or getnetbyaddr().

Compatibility This function is not in the C99 specification.

See Also getnetbyaddr(), getnetbyname()

setprotoent Function
Purpose Opens and rewinds a file.

Declared In posix/netdb.h

Prototype void setprotoent (int stayopen)

Parameters → stayopen
If non-zero, the network database is not closed after each call
to getprotobyname() or getprotobynumber().

Compatibility This function is not in the C99 specification.

See Also getprotobyname(), getprotobynumber()

netdb.h
setservent

Palm OS Protein C/C++ Compiler Language and Library Reference 125

setservent Function
Purpose Opens and rewinds a file.

Declared In posix/netdb.h

Prototype void setservent (int stayopen)

Parameters → stayopen
If non-zero, the network database is not closed after each call
to getservbyname() or getservbyport().

Compatibility This function is not in the C99 specification.

See Also getservbyname(), getservbyport()

netdb.h
setservent

126 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 127

17
PalmMath.h
The <PalmMath.h> header defines Palm OS specific mathematical
functions not specified in the ANSI/ISO standard.

Constants

Math Constants
Purpose These constants are intended to be used as 32-bit floats. These

constants should not be used as double precision arguments.
However, a new double precision version of each of these may be
created by removing the “f” suffix from the end of each decimal
string.

Declared In posix/sys/palmmath.h

Constants #define M_E 2.7182818284590452354f
Approximates the mathematical constant e.

#define M_LOG2E 1.4426950408889634074f
Approximates the mathematical constant log2(e).

#define M_LOG10E 0.43429448190325182765f
Approximates the mathematical constant log10(e).

#define M_LN2 0.69314718055994530942f
Approximates the mathematical constant loge(2).

#define M_LN10 2.30258509299404568402f
Approximates the mathematical constant loge(10).

#define M_PI 3.14159265358979323846f
Single precision approximation to π.

#define M_PI_2 1.57079632679489661923f
Single precision approximation to π/2.

#define M_1_PI 0.31830988618379067154f
Single precision approximation to 1/π.

PalmMath.h
Math Constants

128 Palm OS Protein C/C++ Compiler Language and Library Reference

#define M_PI_4 0.78539816339744830962f
Single precision approximation to π/4.

#define M_2_PI 0.63661977236758134308f
Single precision approximation to 2/π.

#define M_2_SQRTPI 1.12837916709551257390f
Single precision approximation to 2/√π.

#define M_SQRT2 1.41421356237309504880f
Approximates the mathematical constant √2.

#define M_SQRT1_2 0.70710678118654752440f
Approximates the mathematical constant 1/√2.

#define PI M_PI
Single precision approximation to π.

#define PI2 M_PI_2
Single precision approximation to π/2.

#define M_PI_3 1.047197551196597746154f
Single precision approximation to π/3.

#define M_3_PI_4 2.356194490192344928846f
Single precision approximation to 3*π/4.

#define M_5_PI_4 3.926990816987241548076f
Single precision approximation to 5*π/4.

#define M_3_PI_2 4.71238898038468985769f
Single precision approximation to 3*π/2.

#define M_7_PI_4 5.497787143782138167306f
Single precision approximation to 7*π/4.

PalmMath.h
lfloorf

Palm OS Protein C/C++ Compiler Language and Library Reference 129

Functions and Macros

lceilf Function
Purpose Computes the nearest 32-bit signed integer not less than x.

Declared In posix/sys/palmmath.h

Prototype int32_t lceilf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the nearest 32-bit signed integer not less than x. In cases
where x is out of the range of representable integers, +/-INT_MAX is
returned.

Comments Exceptions are never raised.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also ceil(), ceilf(), lfloorf()

lfloorf Function
Purpose Computes the nearest 32-bit signed integer not greater than x.

Declared In posix/sys/palmmath.h

Prototype int32_t lfloorf (float x)

Parameters → x
Value of type float to be evaluated.

Returns Returns the nearest 32-bit signed integer not greater than x. In cases
where x is out of the range of representable integers, +/-INT_MAX is
returned.

Comments Exceptions are never raised.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also lceilf(), floor(), floorf()

PalmMath.h
sincosf

130 Palm OS Protein C/C++ Compiler Language and Library Reference

sincosf Function
Purpose Computes an approximation to the sine (sin_val) and cosine

(cos_val) of any angle in a single call.

Declared In posix/sys/palmmath.h

Prototype void sincosf (float angle, float *cos_val,
float *sin_val)

Parameters → angle
Must be specified in radians.

→ cos_val
Cosine value.

→ sin_val
Sine value.

Returns Returns the approximation to the sine (sin_val) and cosine
(cos_val) of the specified angle.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also cos(), sin()

Palm OS Protein C/C++ Compiler Language and Library Reference 131

18
select.h
The <select.h> header defines the select() macro, which is
used for synchronous I/O multiplexing.

Functions and Macros

select Function
Purpose Examines the I/O descriptor sets whose addresses are passed in to

see if some of their descriptors are ready.

Declared In posix/sys/select.h

Prototype int select (int fd, fd_set *rfds, fd_set *wfds,
fd_set *efds, struct timeval *timeout)

Parameters → fd
The descriptors are checked in each set; that is, the
descriptors from zero (0) through fd - 1 in the descriptor sets
are examined.

→ rfds
The descriptors are checked to see if some of them are ready
for reading.

→ wfds
The descriptors are checked to see if some of them are ready
for writing.

→ efds
The descriptors are checked to see if some of them have an
exceptional condition pending.

→ timeout
If timeout is a non-NULL pointer, it specifies a maximum
interval to wait for the selection to complete. If timeout is a
NULL pointer, then select() blocks indefinitely. To affect a

select.h
select

132 Palm OS Protein C/C++ Compiler Language and Library Reference

poll, the timeout argument should be non-NULL, pointing
to a zero-valued timeval structure.

Returns Returns the number of ready descriptors that are contained in the
descriptor sets. Otherwise, -1 is returned and the global variable
errno is set to indicate the error. If the time limit expires,
select() returns zero (0). If select() returns with an error,
including one due to an interrupted call, the descriptor sets are
unmodified.

Compatibility This function is not in the C99 specification.

See Also accept(), connect(), read(), recv(), send(), write()

Palm OS Protein C/C++ Compiler Language and Library Reference 133

19
socket.h
The <socket.h> header defines several functions useful to
sockets.

Structures and Types

sockaddr Struct
Purpose Defines a structure used by the kernel to store most addresses.

Declared In posix/sys/time.h

Prototype struct sockaddr {
 sa_family_t sa_family;
 char sa_data[14];
}

Fields sa_family
The address family.

sa_data
The address value.

socklen_t Typedef
Purpose Definitions related to sockets: types, address families, options.

Declared In posix/sys/socket.h

Prototype typedef unsigned int socklen_t

socket.h
Functions and Macros

134 Palm OS Protein C/C++ Compiler Language and Library Reference

Functions and Macros

accept Function
Purpose Accepts a connection on a socket by extracting the first connection

request on the queue of pending connections, creating a new socket
with the same properties of sock and allocating a new file
descriptor for the socket.

Declared In posix/sys/socket.h

Prototype int accept (int sock, struct sockaddr *addr,
socklen_t *addrlen)

Parameters → sock
A socket that has been created with socket(), bound to an
address with bind(), and listening for connections after a
listen().

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns a non-negative integer that is a descriptor for the accepted
socket. Otherwise, -1 is returned and the global variable errno is
set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also bind(), connect(), listen(), select(), socket()

socket.h
connect

Palm OS Protein C/C++ Compiler Language and Library Reference 135

bind Function
Purpose Assigns a name to an unnamed socket.

Declared In posix/sys/socket.h

Prototype int bind (int sock, const struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket that has been created with socket() that exists in a
namespace but has no name defined.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns zero (0) if the bind is successful. Otherwise, -1 is returned
and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also connect(), getsockname(), listen(), socket()

connect Function
Purpose Initiates a connection on a socket.

Declared In posix/sys/socket.h

Prototype int connect (int sock,
const struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

socket.h
getpeername

136 Palm OS Protein C/C++ Compiler Language and Library Reference

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

Compatibility This function is not in the C99 specification.

See Also accept(), getsockname(), getsockopt(), select(),
socket()

getpeername Function
Purpose Gets the name of the connected peer.

Declared In posix/sys/socket.h

Prototype int getpeername (int sock, struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns the name of the peer connected to the specified socket.

Compatibility This function is not in the C99 specification.

See Also accept(), bind(), getsockname(), socket()

socket.h
getsockopt

Palm OS Protein C/C++ Compiler Language and Library Reference 137

getsockname Function
Purpose Gets the socket name.

Declared In posix/sys/socket.h

Prototype int getsockname (int sock, struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

← addr
A result parameter that is filled in with the source address of
the connecting entity, as known to the communications layer.

↔ addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
returned.

Returns Returns the current name for the specified socket.

Compatibility This function is not in the C99 specification.

See Also bind(), socket()

getsockopt Function
Purpose Gets the options on sockets.

Declared In posix/sys/socket.h

Prototype int getsockopt (int sock, int level, int option,
void *optval, socklen_t *optlen)

Parameters → sock
A socket.

→ level
To manipulate options at the socket level, level is specified
as SOL_SOCKET.

→ option
option and any specified options are passed uninterpreted
to the appropriate protocol module for interpretation.

socket.h
listen

138 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

Compatibility This function is not in the C99 specification.

See Also getprotoent(), ioctl(), select(), socket(),
setsockopt()

listen Function
Purpose Listens for connections on a socket.

Declared In posix/sys/socket.h

Prototype int listen (int sock, int backlog)

Parameters → sock
A socket.

→ backlog
The maximum length the queue of pending connections may
grow to.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

Compatibility This function is not in the C99 specification.

See Also accept(), connect(), socket()

recv Function
Purpose Normally used only on a connected socket and is identical to

recvfrom() with a NULL addr parameter.

Declared In posix/sys/socket.h

Prototype ssize_t recv (int sock, void *data,
size_t datalen, int flags)

Parameters → sock
A socket.

→ data
The message.

socket.h
recvfrom

Palm OS Protein C/C++ Compiler Language and Library Reference 139

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_PEEK, MSG_WAITALL.

Returns Returns the length of the message upon successful completion.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

Compatibility This function is not in the C99 specification.

See Also connect(), recvfrom(), recvmsg()

recvfrom Function
Purpose Receives messages from a socket, and may be used to receive data

on a socket whether or not it is connection-oriented.

Declared In posix/sys/socket.h

Prototype ssize_t recvfrom (int sock, void *data,
size_t datalen, int flags,
struct sockaddr *addr, socklen_t *addrlen)

Parameters → sock
A socket.

→ data
The message.

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_PEEK, MSG_WAITALL.

→ addr
If addr is non-NULL, and the socket is not connection-
oriented, the source address of the message is filled in.

socket.h
recvmsg

140 Palm OS Protein C/C++ Compiler Language and Library Reference

← addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
stored there.

Returns Returns the length of the message upon successful completion.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

Compatibility This function is not in the C99 specification.

See Also connect(), recv(), recvmsg()

recvmsg Function
Purpose Receives messages from a socket, and may be used to receive data

on a socket whether or not it is connection-oriented.

Declared In posix/sys/socket.h

Prototype ssize_t recvmsg (int sd, struct msghdr *msg,
int flags)

Parameters → sd
A socket.

→ msg
The message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_PEEK, MSG_WAITALL.

Returns Returns the length of the message upon successful completion.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error. If a message is too long to fit in the supplied
buffer, excess bytes may be discarded depending on the type of
socket the message is received from.

Compatibility This function is not in the C99 specification.

See Also connect(), recv(), recvfrom()

socket.h
sendmsg

Palm OS Protein C/C++ Compiler Language and Library Reference 141

send Function
Purpose Sends a message from a socket.

Declared In posix/sys/socket.h

Prototype ssize_t send (int sock, const void *data,
size_t datalen, int flags)

Parameters → sock
A socket.

→ data
The message.

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_DONTROUTE.

Returns Returns the number of characters sent. Otherwise, -1 is returned and
the global variable errno is set to indicate the error.

Comments May be used only when the socket is in a connected state.

Compatibility This function is not in the C99 specification.

See Also select(), sendmsg(), sendto()

sendmsg Function
Purpose Sends a message from a socket.

Declared In posix/sys/socket.h

Prototype ssize_t sendmsg (int sd,
const struct msghdr *msg, int flags)

Parameters → sd
A socket.

→ msg
The message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_DONTROUTE.

socket.h
sendto

142 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns the number of characters sent. Otherwise, -1 is returned and
the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also select(), send(), sendto()

sendto Function
Purpose Sends a message from a socket.

Declared In posix/sys/socket.h

Prototype ssize_t sendto (int sock, const void *data,
size_t datalen, int flags,
const struct sockaddr *addr,
socklen_t addrlen)

Parameters → sock
A socket.

→ data
The message.

→ datalen
The length of the message.

→ flags
ORs together one or more of the values: MSG_OOB,
MSG_DONTROUTE.

→ addr
If addr is non-NULL, and the socket is not connection-
oriented, the source address of the message is filled in.

← addrlen
Initially contains the amount of space pointed to by addr; on
return, it contains the actual length (in bytes) of the address
stored there.

Returns Returns the number of characters sent. Otherwise, -1 is returned and
the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also select(), send(), sendmsg()

socket.h
shutdown

Palm OS Protein C/C++ Compiler Language and Library Reference 143

setsockopt Function
Purpose Sets options on sockets.

Declared In posix/sys/socket.h

Prototype int setsockopt (int sock, int level, int option,
const void *optval, socklen_t optlen)

Parameters → sock
A socket.

→ level
To manipulate options at the socket level, level is specified
as SOL_SOCKET.

→ option
Any specified option(s) passed uninterpreted to the
appropriate protocol module for interpretation.

→ optval
Used to access option values. Identifies a buffer in which the
value for the requested option is returned.

→ optlen
Used to access option values. Identifies a buffer in which the
length for the requested option is returned.

Returns Returns zero (0) if the connection or binding is successful.
Otherwise, -1 is returned and the global variable errno is set to
indicate the error.

Compatibility This function is not in the C99 specification.

See Also getprotoent(), getsockopt(), ioctl(), select(),
socket()

shutdown Function
Purpose Disables subsequent send and/or receive operations on a socket.

Declared In posix/sys/socket.h

Prototype int shutdown (int sock, int direction)

Parameters → sock
A socket.

socket.h
socket

144 Palm OS Protein C/C++ Compiler Language and Library Reference

→ direction
Specifies the type of shutdown. The values are as follows:

SHUT_RD

Disables further receive operations.

SHUT_WR

Disables further send operations.

SHUT_RDWR

Disables further send and receive operations.

Returns Returns zero (0) upon successful completion. Otherwise, 1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

socket Function
Purpose Creates an endpoint for communication.

Declared In posix/sys/socket.h

Prototype int socket (int family, int type, int proto)

Parameters → family
A communications domain within which communication
takes place; this selects the protocol family that should be
used.

→ type
The semantics of communication.

→ proto
A particular protocol to be used with the socket.

Returns Returns a descriptor referencing the socket. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also getsockopt()

Palm OS Protein C/C++ Compiler Language and Library Reference 145

20
stdarg.h
The <stdarg.h> header defines several macros useful in the
creation of functions that accept a variable number of arguments.

Functions and Macros

va_arg Macro
Purpose Expands to an expression that has the type and value of the next

argument in the call.

Declared In posix/stdarg.h

Prototype #define va_arg (va_list ap, t)

Parameters → ap
An object of type va_list initialized by va_start().

→ t
A type.

Returns Returns an argument value.

See Also va_start()

va_copy Macro
Purpose Makes dest a copy of src.

Declared In posix/stdarg.h

Prototype #define va_copy (va_list dest, va_list src)

Parameters → dest
A copy of src.

→ src
An object of type va_list initialized by va_start().

Returns Returns no value.

stdarg.h
va_end

146 Palm OS Protein C/C++ Compiler Language and Library Reference

va_end Macro
Purpose Handles a normal function return from the function whose variable

argument list was initialized by va_start() or va_copy().

Declared In posix/stdarg.h

Prototype #define va_end (va_list ap)

Parameters → ap
An object of type va_list initialized by va_start().

Returns Returns no value.

See Also va_copy(), va_start()

va_start Macro
Purpose Initializes the variable-length argument list.

Declared In posix/stdarg.h

Prototype #define va_start (va_list ap, v)

Parameters → ap
An object of type va_list.

→ v
The last known fixed argument being passed to the function
(the argument before the ellipsis).

Returns Returns no value.

Comments This macro initializes ap for subsequent use by va_arg(),
va_copy(), and va_end(), and must be called first.

See Also va_arg(), va_end()

Palm OS Protein C/C++ Compiler Language and Library Reference 147

21
stddef.h
The <stddef.h> header defines the commonly used offsetof()
macro.

Functions and Macros

offsetof Macro
Purpose Expands to an integer constant expression that has type size_t,

the value of which is the offset in bytes to the structure member
(designated by member) from the beginning of its structure
(designated by type).

Declared In posix/stddef.h

Prototype #define offsetof (type, member)

Parameters → type
The structure.

→ member
The structure member.

Returns Returns the offset of a structure’s member.

stddef.h
offsetof

148 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 149

22
stdio.h
The <stdio.h> header defines functions for performing input and
output.

The current expected behavior of the standard I/O library is to
direct stdout and stderr output to a debugger via
DbgMessage(), and to read bytes from stdin via the debugger
using DbgGetChar(). Attempting to close one of the standard files
[stdin/stdout/stderr] is not currently supported.

Functions and Macros

asprintf Function
Purpose Writes to a dynamically allocated string that is stored in ret.

Declared In posix/stdio.h

Prototype int asprintf (char **ret, const char *format,
...)

Parameters → ret
A dynamically allocated string.

→ format
A string that specifies how subsequent arguments are
converted for output.

Returns Returns a pointer to a buffer sufficiently large to hold the string in
the ret argument.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

stdio.h
clearerr

150 Palm OS Protein C/C++ Compiler Language and Library Reference

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also fprintf(), printf(), snprintf(), sprintf(),
vasprintf(), vfprintf(), vprintf(), vsnprintf(),
vsprintf()

clearerr Function
Purpose Clears a stream’s end-of-file and error status for a stream.

Declared In posix/stdio.h

Prototype void clearerr (FILE *stream)

Parameters → stream
The specified stream.

Compatibility This function is in the C99 specification.

See Also feof(), ferror(), fileno()

fclose Function
Purpose Closes a stream.

Declared In posix/stdio.h

Prototype int fclose (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns zero (0) upon successful completion.

Comments This function disassociates the specified stream from its underlying
file or set of functions. If the stream was being used for output, any
buffered data is written first.

Compatibility This function is in the C99 specification.

See Also fflush()

stdio.h
feof

Palm OS Protein C/C++ Compiler Language and Library Reference 151

fdopen Function
Purpose Associates a stream with the existing file descriptor.

Declared In posix/stdio.h

Prototype FILE *fdopen (int fileds, const char *mode)

Parameters → fileds
The existing file descriptor.

→ mode
Must be compatible with the mode of the file descriptor.

Returns Returns a FILE pointer upon successful completion. Otherwise,
NULL is returned and the global variable errno is set to indicate the
error.

Comments The stream is positioned at the file offset of the file descriptor.

Compatibility This function is not in the C99 specification.

See Also fopen(), freopen()

feof Function
Purpose Checks the end-of-file status of a stream.

Declared In posix/stdio.h

Prototype int feof (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns non-zero if the end-of-file indicator is set.

Comments The end-of-file indicator can only be cleared by the function
clearerr().

Compatibility This function is in the C99 specification.

See Also clearerr(), ferror(), fileno()

stdio.h
ferror

152 Palm OS Protein C/C++ Compiler Language and Library Reference

ferror Function
Purpose Checks the error status of a stream.

Declared In posix/stdio.h

Prototype int ferror (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns non-zero if the error indicator is set.

Comments The end-of-file indicator can only be cleared by the function
clearerr().

Compatibility This function is in the C99 specification.

See Also clearerr(), feof(), fileno()

fflush Function
Purpose Flushes a stream.

Declared In posix/stdio.h

Prototype int fflush (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns zero (0) upon successful completion. Otherwise, EOF is
returned and the global variable errno is set to indicate the error.

Comments The open status of the stream is unaffected.

Compatibility This function is in the C99 specification.

See Also fclose(), fpurge()

fgetc Function
Purpose Gets a character from a stream.

Declared In posix/stdio.h

Prototype int fgetc (FILE *stream)

stdio.h
fgetpos

Palm OS Protein C/C++ Compiler Language and Library Reference 153

Parameters → stream
The specified stream.

Returns Returns the next requested object from the stream. Otherwise, EOF
is returned if the stream is at end-of-file or a read error occurs.

Compatibility This function is in the C99 specification.

See Also getc(), ungetc()

fgetln Function
Purpose Gets a line from a stream.

Declared In posix/stdio.h

Prototype char *fgetln (FILE *stream, size_t *len)

Parameters → stream
The specified stream.

→ len
The length of the line, including the final newline.

Returns Returns a pointer to the line upon successful completion.
Otherwise, NULL is returned.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also fgets()

fgetpos Function
Purpose Gets a file position for a stream.

Declared In posix/stdio.h

Prototype int fgetpos (FILE *stream, fpos_t *pos)

Parameters → stream
The specified stream.

→ pos
The current value of the file offset from the object.

stdio.h
fgets

154 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns zero (0) upon successful completion. Otherwise, a non-zero
value is returned and the global variable errno is set to indicate the
error.

Comments An alternative interface equivalent to ftell() and ftello().

Compatibility This function is in the C99 specification.

See Also ftell(), ftello()

fgets Function
Purpose Gets a line from a stream.

Declared In posix/stdio.h

Prototype char *fgets (char *str, int size, FILE *stream)

Parameters → str
A character string.

→ size
The number of characters to look for.

→ stream
The specified stream.

Returns Returns a pointer to the string upon successful completion.
Otherwise, NULL is returned if the stream is at end-of-file or a read
error occurs before any characters are read.

Comments Reads at most one less than the number of characters specified by
size from the specified stream and stores the characters in the
string str. Reading stops when a newline character is found, at
end-of-file, or error. This function does not distinguish between
end-of-file and error.

Compatibility This function is in the C99 specification.

See Also fgetln(), fgets()

stdio.h
fopen

Palm OS Protein C/C++ Compiler Language and Library Reference 155

fileno Function
Purpose Examines the argument stream and returns its integer descriptor.

Declared In posix/stdio.h

Prototype int fileno (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns an integer descriptor.

Compatibility This function is not in the C99 specification.

See Also clearerr(), feof(), ferror()

fopen Function
Purpose Opens the file whose name is the string pointed to by path and

associates a stream with it.

Declared In posix/stdio.h

Prototype FILE *fopen (const char *path, const char *mode)

Parameters → path
A path pointing to a string containing a file name.

→ mode
A string indicating the mode.

Returns Returns a FILE pointer upon successful completion. Otherwise,
NULL is returned and the global variable errno is set to indicate the
error.

Compatibility This function is in the C99 specification.

See Also fdopen(), freopen()

stdio.h
fprintf

156 Palm OS Protein C/C++ Compiler Language and Library Reference

fprintf Function
Purpose Writes formatted output to an output stream.

Declared In posix/stdio.h

Prototype int fprintf (FILE *stream, const char *format,
...)

Parameters → stream
The specified stream.

→ format
A string that specifies how subsequent arguments are
converted for output.

Returns Returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), printf(), snprintf(), sprintf(),
vasprintf(), vfprintf(), vprintf(), vsnprintf(),
vsprintf()

fpurge Function
Purpose Erases any input or output buffered in a stream.

Declared In posix/stdio.h

Prototype int fpurge (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns zero (0) upon successful completion. Otherwise, EOF is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also fflush()

stdio.h
fputs

Palm OS Protein C/C++ Compiler Language and Library Reference 157

fputc Function
Purpose Writes a character (converted to an “unsigned char”) to an output

stream.

Declared In posix/stdio.h

Prototype int fputc (int c, FILE *stream)

Parameters → c
A character.

→ stream
The specified stream.

Returns Returns the character written. Otherwise, EOF is returned if an error
occurs.

Compatibility This function is in the C99 specification.

See Also getc(), putc()

fputs Function
Purpose Writes a line to a stream.

Declared In posix/stdio.h

Prototype int fputs (const char *str, FILE *stream)

Parameters → str
A character string.

→ stream
The specified stream.

Returns Returns zero (0) upon successful completion and EOF on error.

Compatibility This function is in the C99 specification.

See Also puts()

stdio.h
fread

158 Palm OS Protein C/C++ Compiler Language and Library Reference

fread Function
Purpose Reads objects from the stream, storing them at the location specified

by ptr.

Declared In posix/stdio.h

Prototype size_t fread (void *ptr, size_t size,
size_t nmemb, FILE *stream)

Parameters → ptr
The storage location.

→ size
The size of the object, in bytes.

→ nmemb
An object.

→ stream
The specified stream.

Returns Returns the number of objects read.

Comments Advances the file position indicator for the stream by the number of
bytes read.

Compatibility This function is in the C99 specification.

See Also read()

freopen Function
Purpose Opens the file whose name is the string pointed to by path and

associates a stream with it.

Declared In posix/stdio.h

Prototype FILE *freopen (const char *path,
const char *mode, FILE *stream)

Parameters → path
A path pointing to a string containing a file name.

→ mode
A string indicating the mode.

→ stream
The specified stream.

stdio.h
fscanf

Palm OS Protein C/C++ Compiler Language and Library Reference 159

Returns Returns a FILE pointer upon successful completion. Otherwise,
NULL is returned and the global variable errno is set to indicate the
error.

Compatibility This function is in the C99 specification.

See Also fdopen(), fopen()

fscanf Function
Purpose Reads formatted input from a stream.

Declared In posix/stdio.h

Prototype int fscanf (FILE *stream, const char *format,
...)

Parameters → stream
The specified stream.

→ format
The format string may contain conversion specifiers or other
characters.

Returns Returns the number of input items assigned, which can be fewer
than provided for, or even zero (0), in the event of a matching
failure. Zero indicates that, while there was input available, no
conversions were assigned. The value EOF is returned if an input
failure occurs before any conversion such as an end-of-file occurs. If
an error or end-of-file occurs after conversion has begun, the
number of conversions that were successfully completed is
returned.

Comments Scanning stops when an input character does not match such a
format character. Scanning also stops when an input conversion
cannot be made.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character. It also does not properly scan wide
characters.

See Also scanf(), sscanf(), vscanf(), vsscanf()

stdio.h
fseek

160 Palm OS Protein C/C++ Compiler Language and Library Reference

fseek Function
Purpose Sets the file position indicator for a stream. The new position,

measured in bytes, is obtained by adding offset bytes to the position
specified by whence.

Declared In posix/stdio.h

Prototype int fseek (FILE *stream, long offset, int whence)

Parameters → stream
The specified stream.

→ offset
The number of bytes to add to the position.

→ whence
The position in a stream. If whence is set to SEEK_SET,
SEEK_CUR, or SEEK_END, the offset is relative to the start of
the file, the current position indicator, or end-of-file,
respectively.

Returns Returns zero (0) upon successful completion. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is in the C99 specification.

See Also fseeko(), ftell()

fseeko Function
Purpose Identical to the fseek() function except that the offset argument is

of type off_t.

Declared In posix/stdio.h

Prototype int fseeko (FILE *stream, off_t offset,
int whence)

Parameters → stream
The specified stream.

→ offset
The number of bytes to add to the position.

→ whence
The position in a stream. If whence is set to SEEK_SET,
SEEK_CUR, or SEEK_END, the offset is relative to the start of

stdio.h
ftell

Palm OS Protein C/C++ Compiler Language and Library Reference 161

the file, the current position indicator, or end-of-file,
respectively.

Returns Returns zero (0) upon successful completion. Otherwise, a non-zero
value is returned and the global variable errno is set to indicate the
error.

Compatibility This function is not in the C99 specification.

See Also fseek()

fsetpos Function
Purpose Sets a file position for a stream.

Declared In posix/stdio.h

Prototype int fsetpos (FILE *stream, const fpos_t *pos)

Parameters → stream
The specified stream.

→ pos
The current value of the file offset into the object.

Returns Returns zero (0) upon successful completion. Otherwise, a non-zero
value is returned and the global variable errno is set to indicate the
error.

Comments An alternative interface equivalent to fseek() and fseeko().

Compatibility This function is in the C99 specification.

See Also fgetpos()

ftell Function
Purpose Gets the current value of the file position indicator for a stream.

Declared In posix/stdio.h

Prototype long ftell (FILE *stream)

Parameters → stream
The specified stream.

stdio.h
ftello

162 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns the current offset upon successful completion. Otherwise,
-1 is returned and the global variable errno is set to indicate the
error.

Compatibility This function is in the C99 specification.

See Also fseek(), ftello()

ftello Function
Purpose Identical to the ftell() function except that the return value is of

type off_t.

Declared In posix/stdio.h

Prototype off_t ftello (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns the current offset upon successful completion. Otherwise,
-1 is returned and the global variable errno is set to indicate the
error.

Compatibility This function is not in the C99 specification.

See Also ftell()

fwrite Function
Purpose Writes objects to the stream, obtaining them from the location

specified by ptr.

Declared In posix/stdio.h

Prototype size_t fwrite (const void *ptr, size_t size,
size_t nmemb, FILE *stream)

Parameters → ptr
The storage location.

→ size
The size of the object, in bytes.

→ nmemb
An object.

stdio.h
getchar

Palm OS Protein C/C++ Compiler Language and Library Reference 163

→ stream
The specified stream.

Returns Returns the number of objects written.

Comments Advances the file position indicator for the stream by the number of
bytes written.

Compatibility This function is in the C99 specification.

See Also write()

getc Function
Purpose Gets a character from a stream.

Declared In posix/stdio.h

Prototype int getc (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns the next requested object from the stream. Otherwise, EOF
is returned if the stream is at end-of-file or a read error occurs.

Comments Essentially identical to fgetc(), but is a macro that expands inline.

Compatibility This function is in the C99 specification.

See Also fgetc(), putc()

getchar Function
Purpose Gets a character from the standard input stream stdin.

Declared In posix/stdio.h

Prototype int getchar (void)

Returns Returns the next requested object from the standard input stream
stdin. Otherwise, EOF is returned if the stream is at end-of-file or a
read error occurs.

Comments Identical to the getc() function with the argument stdin.

Compatibility This function is in the C99 specification.

See Also getc()

stdio.h
gets

164 Palm OS Protein C/C++ Compiler Language and Library Reference

gets Function
Purpose Gets a line from a stream.

Declared In posix/stdio.h

Prototype char *gets (char *str)

Parameters → str
A character string.

Returns Returns a pointer to the string upon successful completion.
Otherwise, NULL is returned if the stream is at end-of-file or a read
error occurs before any characters are read.

Comments Identical to fgets() with an infinite size and a stream of stdin,
except that the newline character (if any) is not stored in the string.

Compatibility This function is in the C99 specification.

See Also fgets()

getw Function
Purpose Gets the next int (if present) from a stream.

Declared In posix/stdio.h

Prototype int getw (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns the next requested object from the stream. Otherwise, EOF
is returned if the stream is at end-of-file or a read error occurs.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also putw()

stdio.h
printf

Palm OS Protein C/C++ Compiler Language and Library Reference 165

perror Function
Purpose Writes an error to the standard error stream stderr.

Declared In posix/stdio.h

Prototype void perror (const char *string)

Parameters → string
The language-dependent error message string affiliated with
an error number. If string is not NULL, string is
prepended to the language-dependent error message string
that is printed. That is, the message “<string>: <error
string>” gets printed to stderr, where <error string> is
the error message that corresponds to the error code found in
the global variable errno.

Comments The contents of the error message string is the same as those
returned by strerror() with argument errno.

Compatibility This function is in the C99 specification.

This function is internationally safe to use, since it ultimately uses
the SysErrString() function; see Exploring Palm OS: System
Management.

See Also strerror()

printf Function
Purpose Writes formatted output to the standard output stdout.

Declared In posix/stdio.h

Prototype int printf (const char *format, ...)

Parameters → format
A string that specifies how subsequent arguments are
converted for output.

Returns Returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

Compatibility This function is in the C99 specification.

stdio.h
putc

166 Palm OS Protein C/C++ Compiler Language and Library Reference

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), snprintf(), sprintf(),
vasprintf(), vfprintf(), vprintf(), vsnprintf(),
vsprintf()

putc Function
Purpose Writes a character to a stream.

Declared In posix/stdio.h

Prototype int putc (int c, FILE *stream)

Parameters → c
A character.

→ stream
The specified stream.

Returns Returns the character written. Otherwise, EOF is returned if an error
occurs.

Comments Essentially identical to fputc(), but is a macro that expands inline.

Compatibility This function is in the C99 specification.

See Also fputc()

putchar Function
Purpose Writes a character to the standard output stdout.

Declared In posix/stdio.h

Prototype int putchar (int c)

Parameters → c
A character.

Returns Returns the character written. Otherwise, EOF is returned if an error
occurs.

Comments Identical to the putc() function with the argument stdout.

stdio.h
putw

Palm OS Protein C/C++ Compiler Language and Library Reference 167

Compatibility This function is in the C99 specification.

See Also putc()

puts Function
Purpose Writes a string to the standard output stdout.

Declared In posix/stdio.h

Prototype int puts (const char *str)

Parameters → str
A character string.

Returns Returns a non-negative integer upon successful completion and
EOF on error.

Compatibility This function is in the C99 specification.

See Also fputs()

putw Function
Purpose Writes the specified word to an output stream.

Declared In posix/stdio.h

Prototype int putw (int w, FILE *stream)

Parameters → w
A word.

→ stream
The specified stream.

Returns Returns zero (0) upon successful completion. Otherwise, EOF is
returned if a write error occurs, or if an attempt is made to write a
read-only stream.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also getw()

stdio.h
rewind

168 Palm OS Protein C/C++ Compiler Language and Library Reference

rewind Function
Purpose Resets the file indicator for a stream to the beginning.

Declared In posix/stdio.h

Prototype void rewind (FILE *stream)

Parameters → stream
The specified stream.

Compatibility This function is in the C99 specification.

scanf Function
Purpose Reads formatted input from the standard input stream stdin.

Declared In posix/stdio.h

Prototype int scanf (const char *format, ...)

Parameters → format
The format string may contain conversion specifiers or other
characters.

Returns Returns the number of input items assigned, which can be fewer
than provided for, or even zero (0), in the event of a matching
failure. Zero indicates that, while there was input available, no
conversions were assigned. The value EOF is returned if an input
failure occurs before any conversion such as an end-of-file occurs. If
an error or end-of-file occurs after conversion has begun, the
number of conversions that were successfully completed is
returned.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character. It also does not properly scan wide
characters.

See Also fscanf(), sscanf(), vscanf(), vsscanf()

stdio.h
setbuffer

Palm OS Protein C/C++ Compiler Language and Library Reference 169

setbuf Function
Purpose Sets the buffer size for a stream.

Declared In posix/stdio.h

Prototype void setbuf (FILE *stream, char *buf)

Parameters → stream
The specified stream.

→ buf
Points to a buffer.

Comments An alias for calls to setvbuf().

Compatibility This function is in the C99 specification.

See Also setvbuf()

setbuffer Function
Purpose Sets the buffer size for a stream.

Declared In posix/stdio.h

Prototype void setbuffer (FILE *stream, char *buf,
int size)

Parameters → stream
The specified stream.

→ buf
Points to a buffer at least size bytes long; this buffer is used
instead of the current buffer.

→ size
The size of the buffer.

Comments An alias for calls to setvbuf().

Compatibility This function is not in the C99 specification.

See Also setvbuf()

stdio.h
setlinebuf

170 Palm OS Protein C/C++ Compiler Language and Library Reference

setlinebuf Function
Purpose Sets the buffer size for a stream.

Declared In posix/stdio.h

Prototype int setlinebuf (FILE *stream)

Parameters → stream
The specified stream.

Returns Returns what the equivalent setvbuf() would have returned.

Comments An alias for calls to setvbuf().

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also setvbuf()

setvbuf Function
Purpose Sets the buffer size and scheme for a stream. Used to alter the

buffering behavior of a stream.

Declared In posix/stdio.h

Prototype int setvbuf (FILE *stream, char *buf, int mode,
size_t size)

Parameters → stream
The specified stream.

→ buf
A buffer.

→ mode
Must be one of the following: _IONBF, _IOLBF, or IOFBF,
which represents the three types of buffering available
(unbuffered, line buffered, or fully buffered, respectively).

→ size
May be specified as zero (0) to obtain deferred optimal-size
buffer allocation as usual. If it is not zero, then except for
unbuffered files, buf should point to a buffer at least size
bytes long; this buffer is used instead of the current buffer.

stdio.h
snprintf

Palm OS Protein C/C++ Compiler Language and Library Reference 171

Returns Returns zero (0) upon successful completion, or EOF if the request
cannot be honored.

Compatibility This function is in the C99 specification.

See Also setbuf(), setbuffer(), setlinebuf()

snprintf Function
Purpose Writes formatted output to a character string.

Declared In posix/stdio.h

Prototype int snprintf (char *str, size_t size,
const char *format, ...)

Parameters → str
A character string.

→ size
The number of characters.

→ format
A string that specifies how subsequent arguments are
converted for output.

Returns Returns the number of characters that would have been written had
size been sufficiently large, not counting the terminating null
character, or a negative value if an encoding error occurred.

Comments Writes at most size-1 of the characters printed into the output
string (the sizeth character then gets the terminating ‘\0’) if the
return value is greater than or equal to size, the string was too
short and some of the printed characters were discarded. If size is
zero (0), nothing is written and str may be a NULL pointer.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), sprintf(),
vasprintf(), vfprintf(), vprintf(), vsnprintf(),
vsprintf()

stdio.h
sprintf

172 Palm OS Protein C/C++ Compiler Language and Library Reference

sprintf Function
Purpose Writes formatted output to a character string.

Declared In posix/stdio.h

Prototype int sprintf (char *str, const char *format, ...)

Parameters → str
A character string.

→ format
A string that specifies how subsequent arguments are
converted for output.

Returns Returns the number of characters written in the array, not counting
the terminating null character, or a negative value if an encoding
error occurred.

Comments Effectively assumes an infinite size.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), snprintf(),
vasprintf(), vfprintf(), vprintf(), vsnprintf(),
vsprintf()

sscanf Function
Purpose Reads formatted input from a character string.

Declared In posix/stdio.h

Prototype int sscanf (const char *str, const char *format,
...)

Parameters → str
A character string.

→ format
The format string may contain conversion specifiers or other
characters.

Returns Returns the number of input items assigned, which can be fewer
than provided for, or even zero (0), in the event of a matching

stdio.h
vasprintf

Palm OS Protein C/C++ Compiler Language and Library Reference 173

failure. Zero indicates that, while there was input available, no
conversions were assigned. The value EOF is returned if an input
failure occurs before any conversion such as an end-of-file occurs. If
an error or end-of-file occurs after conversion has begun, the
number of conversions that were successfully completed is
returned.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character. It also does not properly scan wide
characters.

See Also fscanf(), scanf(), vscanf(), vsscanf()

ungetc Function
Purpose Places a character back in a stream.

Declared In posix/stdio.h

Prototype int ungetc (int c, FILE *stream)

Parameters → c
A character.

→ stream
The specified stream.

Returns Returns the character pushed-back after the conversion, or EOF if
the operation fails.

Compatibility This function is in the C99 specification.

See Also fgetc()

vasprintf Function
Purpose Writes to a dynamically allocated string that is stored in ret.

Declared In posix/stdio.h

Prototype int vasprintf (char **ret, const char *format,
va_list ap)

stdio.h
vfprintf

174 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → ret
A dynamically allocated string.

→ format
A string that specifies how subsequent arguments are
converted for output.

→ ap
An object of type va_list initialized by va_start().

Returns Returns a pointer to a buffer sufficiently large to hold the string in
the ret argument.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), snprintf(), sprintf(),
vfprintf(), vprintf(), vsnprintf(), vsprintf()

vfprintf Function
Purpose Writes formatted output to an output stream using an argument list.

Declared In posix/stdio.h

Prototype int vfprintf (FILE *stream, const char *format,
va_list ap)

Parameters → stream
The specified stream.

→ format
A string that specifies how subsequent arguments are
converted for output.

→ ap
An object of type va_list initialized by va_start().

Returns Returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

Compatibility This function is in the C99 specification.

stdio.h
vscanf

Palm OS Protein C/C++ Compiler Language and Library Reference 175

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), snprintf(), sprintf(),
vasprintf(), vprintf(), vsnprintf(), vsprintf()

vprintf Function
Purpose Writes formatted output to the standard output stdout using an

argument list.

Declared In posix/stdio.h

Prototype int vprintf (const char *format, va_list ap)

Parameters → format
A string that specifies how subsequent arguments are
converted for output.

→ ap
An object of type va_list initialized by va_start().

Returns Returns the number of characters transmitted, or a negative value if
an output or encoding error occurred.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), snprintf(), sprintf(),
vasprintf(), vfprintf(), vsnprintf(), vsprintf()

vscanf Function
Purpose Reads formatted input from the standard output stdout using an

argument list.

Declared In posix/stdio.h

Prototype int vscanf (const char *format, va_list ap)

stdio.h
vsnprintf

176 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → format
The format string may contain conversion specifiers or other
characters.

→ ap
An object of type va_list initialized by va_start().

Returns Returns the number of input items assigned, which can be fewer
than provided for, or even zero (0), in the event of a matching
failure. Zero indicates that, while there was input available, no
conversions were assigned. The value EOF is returned if an input
failure occurs before any conversion such as an end-of-file occurs. If
an error or end-of-file occurs after conversion has begun, the
number of conversions that were successfully completed is
returned.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character. It also does not properly scan wide
characters.

See Also fscanf(), scanf(), sscanf(), vsscanf()

vsnprintf Function
Purpose Writes formatted output to a character string.

Declared In posix/stdio.h

Prototype int vsnprintf (char *str, size_t size,
const char *format, va_list ap)

Parameters → str
A character string.

→ size
The number of characters.

→ format
A string that specifies how subsequent arguments are
converted for output.

stdio.h
vsprintf

Palm OS Protein C/C++ Compiler Language and Library Reference 177

→ ap
An object of type va_list initialized by va_start().

Returns Returns the number of characters that would have been written had
size been sufficiently large, not counting the terminating null
character, or a negative value if an encoding error occurred.

Comments Writes at most size-1 of the characters printed into the output
string (the sizeth character then gets the terminating ‘\0’)) if the
return value is greater than or equal to size, the string was too
short and some of the printed characters were discarded. If size is
zero (0), nothing is written and str may be a NULL pointer.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), snprintf(), sprintf(),
vasprintf(), vfprintf(), vprintf(), vsprintf()

vsprintf Function
Purpose Writes formatted output to a string using an argument list.

Declared In posix/stdio.h

Prototype int vsprintf (char *str, const char *format,
va_list ap)

Parameters → str
A character string.

→ format
A string that specifies how subsequent arguments are
converted for output.

→ ap
An object of type va_list initialized by va_start().

Returns Returns the number of characters written in the array, not counting
the terminating null character, or a negative value if an encoding
error occurred.

Comments Effectively assumes an infinite size.

stdio.h
vsscanf

178 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character.

See Also asprintf(), fprintf(), printf(), snprintf(), sprintf(),
vasprintf(), vfprintf(), vprintf(), vsnprintf()

vsscanf Function
Purpose Reads formatted input from a string using an argument list.

Declared In posix/stdio.h

Prototype int vsscanf (const char *str, const char *format,
va_list ap)

Parameters → str
A character string.

→ format
The format string may contain conversion specifiers or other
characters.

→ ap
An object of type va_list initialized by va_start().

Returns Returns the number of input items assigned, which can be fewer
than provided for, or even zero (0), in the event of a matching
failure. Zero indicates that, while there was input available, no
conversions were assigned. The value EOF is returned if an input
failure occurs before any conversion such as an end-of-file occurs. If
an error or end-of-file occurs after conversion has begun, the
number of conversions that were successfully completed is
returned.

Compatibility This function is in the C99 specification.

This function is internationally safe to use except for formatting
floating point numbers, since it does not use a locale-sensitive
decimal point character. It also does not properly scan wide
characters.

See Also fscanf(), scanf(), sscanf(), vscanf()

Palm OS Protein C/C++ Compiler Language and Library Reference 179

23
stdlib.h
The <stdlib.h> header defines several general operation
functions and macros.

Structures and Types

div_t Struct
Purpose The structure returned by the div function.

Declared In posix/stdlib.h

Prototype typedef struct {
 int quot;
 int rem;
} div_t

Fields quot
The quotient.

rem
The remainder.

ldiv_t Struct
Purpose The structure returned by the ldiv function.

Declared In posix/stdlib.h

Prototype typedef struct {
 long quot;
 long rem;
} ldiv_t

Fields quot
The quotient.

rem
The remainder.

stdlib.h
lldiv_t

180 Palm OS Protein C/C++ Compiler Language and Library Reference

lldiv_t Struct
Purpose The structure returned by the lldiv function.

Declared In posix/stdlib.h

Prototype typedef struct {
 int64_t quot;
 int64_t rem;
} lldiv_t

Fields quot
The quotient.

rem
The remainder.

qdiv_t Struct
Purpose The structure returned by the qdiv function.

Declared In posix/stdlib.h

Prototype typedef struct {
 quad_t quot;
 quad_t rem;
} qdiv_t

Fields quot
The quotient.

rem
The remainder.

stdlib.h
atof

Palm OS Protein C/C++ Compiler Language and Library Reference 181

Functions and Macros

abs Function
Purpose Computes the absolute value of an integer.

Declared In posix/stdlib.h

Prototype int abs (int j)

Parameters → j
An integer.

Returns Returns the absolute value.

Compatibility This function is in the C99 specification.

See Also labs(), llabs()

atof Function
Purpose Converts a character string to a numeric value of type double.

Declared In posix/stdlib.h

Prototype double atof (const char *nptr)

Parameters → nptr
The string to be converted to a floating-point number.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. It also does not use a locale-sensitive decimal
point character for formatting floating point numbers.

See Also atoi(), atol(), atoll()

stdlib.h
atoi

182 Palm OS Protein C/C++ Compiler Language and Library Reference

atoi Function
Purpose Converts a character string to a numeric value of type int.

Declared In posix/stdlib.h

Prototype int atoi (const char *nptr)

Parameters → nptr
The string to be converted to an integer.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrAToI() function; see Exploring Palm OS: Text and Localization.

See Also atof(), atol(), atoll()

atol Function
Purpose Converts a character string to a numeric value of type long.

Declared In posix/stdlib.h

Prototype long atol (const char *nptr)

Parameters → nptr
The string to be converted to a long integer.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrAToI() function; see Exploring Palm OS: Text and Localization.

See Also atof(), atoi(), atoll()

stdlib.h
bsearch

Palm OS Protein C/C++ Compiler Language and Library Reference 183

atoll Function
Purpose Converts a character string to a numeric value of type long long.

Declared In posix/stdlib.h

Prototype int64_t atoll (const char *nptr)

Parameters → nptr
The string to be converted to a long long integer.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also atof(), atoi(), atol()

bsearch Function
Purpose Performs a binary search.

Declared In posix/stdlib.h

Prototype void *bsearch (const void *key, const void *base,
size_t nmemb, size_t size,
int (*compar)(const void *, const void *))

Parameters → key
An element of the array.

→ base
The beginning of the array.

→ nmemb
The number of members in the array.

→ size
The size of each element in the array, specified in bytes.

→ compar
The compar() function. This function takes two arguments,
the first is the key pointer and the second is the current
element in the array being compared.

stdlib.h
calloc

184 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns a pointer to a match, if a match is found. Otherwise, a NULL
pointer is returned.

Compatibility This function is in the C99 specification.

See Also qsort(), qsort_r()

calloc Function
Purpose Allocates space for a group of objects.

Declared In posix/stdlib.h

Prototype void *calloc (size_t number, size_t size)

Parameters → number
The number of objects to allocate space for.

→ size
The length in bytes of each object to allocate space for.

Returns Returns a pointer to the allocated memory upon successful
completion. Otherwise, a NULL pointer is returned.

Compatibility This function is in the C99 specification.

See Also free(), malloc(), realloc()

div Function
Purpose Divides the numerator by the denominator.

Declared In posix/stdlib.h

Prototype div_t div (int num, int denom)

Parameters → num
The numerator.

→ denom
The denominator.

Returns Returns the quotient and remainder in a div_t structure.

Compatibility This function is in the C99 specification.

See Also ldiv()

stdlib.h
inplace_realloc

Palm OS Protein C/C++ Compiler Language and Library Reference 185

free Function
Purpose Releases previously allocated memory to heap.

Declared In posix/stdlib.h

Prototype void free (void *ptr)

Parameters → ptr
The allocated memory to free.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also calloc(), malloc(), realloc()

getenv Function
Purpose Gets the current value of an environment variable.

Declared In posix/stdlib.h

Prototype char *getenv (const char *name)

Parameters → name
The environment variable.

Returns Returns a pointer to the current value upon successful completion.
Otherwise, a NULL pointer is returned if name is not in the current
environment.

Compatibility This function is in the C99 specification.

See Also putenv(), setenv()

inplace_realloc Function
Purpose Attempts to resize the memory block inplace.

Declared In posix/stdlib.h

Prototype void *inplace_realloc (void *ptr, size_t size)

Parameters → ptr
The previously allocated memory.

→ size
The size, in bytes, to change to.

stdlib.h
labs

186 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns a pointer, possibly identical to ptr, to the allocated memory
upon successful completion. Otherwise, a NULL pointer is returned,
in which case the memory referenced by ptr is still available and
intact.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also realloc()

labs Function
Purpose Computes the long integer absolute value.

Declared In posix/stdlib.h

Prototype long labs (long j)

Parameters → j
A value of type long.

Returns Returns the absolute value.

Compatibility This function is in the C99 specification.

See Also abs(), llabs()

ldiv Function
Purpose Divides the numerator by the denominator.

Declared In posix/stdlib.h

Prototype ldiv_t ldiv (long num, long denom)

Parameters → num
The numerator.

→ denom
The denominator.

Returns Returns a long integer value.

Compatibility This function is in the C99 specification.

See Also div()

stdlib.h
putenv

Palm OS Protein C/C++ Compiler Language and Library Reference 187

llabs Function
Purpose Computes the long long integer absolute value.

Declared In posix/stdlib.h

Prototype int64_t llabs (int64_t j)

Parameters → j
A value of type long long.

Returns Returns the absolute value.

Compatibility This function is in the C99 specification.

See Also abs(), labs()

malloc Function
Purpose Allocates a block of memory heap.

Declared In posix/stdlib.h

Prototype void *malloc (size_t size)

Parameters → size
The bytes of memory to allocate.

Returns Returns a pointer to the allocated memory upon successful
completion. Otherwise, a NULL pointer is returned.

Compatibility This function is in the C99 specification.

See Also calloc(), free(), realloc()

putenv Function
Purpose Enters an argument into the environment list.

Declared In posix/stdlib.h

Prototype int putenv (const char *string)

Parameters → string
The item to add to the environment list.

Returns Returns zero (0) upon successful completion. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

stdlib.h
qsort

188 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is in the C99 specification.

See Also getenv(), setenv()

qsort Function
Purpose Sorts an array.

Declared In posix/stdlib.h

Prototype void qsort (void *base, size_t nmemb,
size_t size, int (*compar)(const void *,
const void *))

Parameters → base
The beginning of the array.

→ nmemb
The number of members in the array.

→ size
The size of each element in the array, specified in bytes.

→ compar
The compar() function. This function takes two arguments
to be compared. The elements are sorted in ascending order.

Compatibility This function is in the C99 specification.

See Also bsearch(), qsort_r()

qsort_r Function
Purpose Re-entrant interface to qsort(), which sorts an array.

Declared In posix/stdlib.h

Prototype void qsort_r (void *base, size_t nmemb,
size_t size, void *cookie,
int (*compar)(void *, const void *,
const void *))

Parameters → base
The beginning of the array.

stdlib.h
rand_r

Palm OS Protein C/C++ Compiler Language and Library Reference 189

→ nmemb
The number of members in the array.

→ size
The size of each element in the array, specified in bytes.

→ cookie
An argument that is passed unchanged as the first argument
to the function pointed to by compar. This allows the
comparison function to access additional data without using
global variables.

→ compar
The compar() function. This function takes two arguments
to be compared. The elements are sorted in ascending order.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also bsearch(), qsort()

rand Function
Purpose Generates a pseudo-random integer value.

Declared In posix/stdlib.h

Prototype int rand (void)

Returns Returns a pseudo-random integer value.

Compatibility This function is in the C99 specification.

See Also rand_r(), random(), srand()

rand_r Function
Purpose Re-entrant interface to rand(), which generates a pseudo-random

integer value.

Declared In posix/stdlib.h

Prototype int rand_r (unsigned int *seed)

Parameters → seed
The user-provided seed.

stdlib.h
random

190 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns a pseudo-random integer value.

Compatibility This function is not in the C99 specification.

See Also rand()

random Function
Purpose Uses a random number generator to return successive pseudo-

random numbers in the range from zero (0) to (231)-1.

Declared In posix/stdlib.h

Prototype long random (void)

Returns Returns a random number in the range from zero (0) to (231)-1.

Compatibility This function is not in the C99 specification.

See Also rand(), srandom()

realloc Function
Purpose Changes the size of an allocated block of heap memory.

Declared In posix/stdlib.h

Prototype void *realloc (void *ptr, size_t size)

Parameters → ptr
The previously allocated memory.

→ size
The size in bytes to change to.

Returns Returns a pointer, possibly identical to ptr, to the allocated memory
upon successful completion. Otherwise, a NULL pointer is returned,
in which case the memory referenced by ptr is still available and
intact.

Compatibility This function is in the C99 specification.

See Also calloc(), free(), malloc()

stdlib.h
srand

Palm OS Protein C/C++ Compiler Language and Library Reference 191

setenv Function
Purpose Inserts or resets an environment variable in the current environment

list.

Declared In posix/stdlib.h

Prototype int setenv (const char *name, const char *value,
int overwrite)

Parameters → name
The environment variable.

→ value
If name does not exist in the list, it is inserted with the
specified value.

→ overwrite
If name does exist, the argument overwrite is tested. If
overwrite is zero (0), name is not reset, otherwise it is reset
to the specified value.

Returns Returns zero (0) upon successful completion. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Comments This function does not actually do anything outside of the
BCommand environment.

Compatibility This function is not in the C99 specification.

See Also getenv(), putenv(), unsetenv()

srand Function
Purpose Seeds the random number generator used by rand().

Declared In posix/stdlib.h

Prototype void srand (unsigned seed)

Parameters → seed
If no seed value is provided, the rand() function is
automatically seeded with a value of 1.

Compatibility This function is in the C99 specification.

See Also rand(), srandom()

stdlib.h
srandom

192 Palm OS Protein C/C++ Compiler Language and Library Reference

srandom Function
Purpose Seeds the random number generator used by random().

Declared In posix/stdlib.h

Prototype void srandom (unsigned long seed)

Parameters → seed
If no seed value is provided, the random() function is
automatically seeded with a value of 1.

Compatibility This function is not in the C99 specification.

See Also random(), srand()

strtod Function
Purpose Converts a character array to a floating-point value of type double.

Declared In posix/stdlib.h

Prototype double strtod (const char *nptr, char **endptr)

Parameters → nptr
The string to be converted to a floating-point number.

→ endptr
A pointer to a pointer. The address of the first invalid
character is stored in the pointer that endptr points to.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. It also does not use a locale-sensitive decimal
point character for formatting floating point numbers.

See Also strtol(), strtoll(), strtoul(), strtoull()

stdlib.h
strtoll

Palm OS Protein C/C++ Compiler Language and Library Reference 193

strtol Function
Purpose Converts a character array to an integral value of type long int.

Declared In posix/stdlib.h

Prototype long strtol (const char *nptr, char **endptr,
int base)

Parameters → nptr
The string to be converted to a long integer.

→ endptr
A pointer to a pointer. The address of the first invalid
character is stored in the pointer that endptr points to.

→ base
The radix.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrAToI() function; see Exploring Palm OS: Text and Localization.

See Also strtod(), strtoll(), strtoul(), strtoull()

strtoll Function
Purpose Converts a character array to an integer value of type long long

int.

Declared In posix/stdlib.h

Prototype int64_t strtoll (const char *nptr, char **endptr,
int base)

Parameters → nptr
The string to be converted to a long long integer.

→ endptr
A pointer to a pointer. The address of the first invalid
character is stored in the pointer that endptr points to.

→ base
The radix.

stdlib.h
strtoul

194 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strtod(), strtol(), strtoul(), strtoull()

strtoul Function
Purpose Converts a character array to an integer value of type unsigned

long.

Declared In posix/stdlib.h

Prototype unsigned long strtoul (const char *nptr,
char **endptr, int base)

Parameters → nptr
The string to be converted to an unsigned long integer.

→ endptr
A pointer to a pointer. The address of the first invalid
character is stored in the pointer that endptr points to.

→ base
The radix.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strtod(), strtol(), strtoll(), strtoull()

stdlib.h
unsetenv

Palm OS Protein C/C++ Compiler Language and Library Reference 195

strtoull Function
Purpose Converts a character array to an integer value of type unsigned

long long int.

Declared In posix/stdlib.h

Prototype uint64_t strtoull (const char *nptr,
char **endptr, int base)

Parameters → nptr
The string to be converted to an unsigned long long integer.

→ endptr
A pointer to a pointer. The address of the first invalid
character is stored in the pointer that endptr points to.

→ base
The radix.

Returns Returns the converted number upon successful completion.
Otherwise, zero (0) is returned if no conversion can be made.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strtod(), strtol(), strtoll(), strtoul()

unsetenv Function
Purpose Deletes all instances of an environment variable from the

environment list.

Declared In posix/stdlib.h

Prototype void unsetenv (const char *name)

Parameters → name
The environment variable.

Compatibility This function is not in the C99 specification.

See Also setenv()

stdlib.h
unsetenv

196 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 197

24
string.h
The <string.h> header defines several functions useful for
manipulating strings (character arrays).

Functions and Macros

memchr Function
Purpose Searches for an occurrence of a byte in a buffer.

Declared In posix/string.h

Prototype void *memchr (const void *b, int c, size_t len)

Parameters → b
The buffer to search.

→ c
The byte to search for.

→ len
The length of bytes to search in.

Returns Returns a pointer to the byte located, or a NULL pointer if no such
byte exists within len bytes.

Compatibility This function is in the C99 specification.

memcmp Function
Purpose Compares two blocks of memory.

Declared In posix/string.h

Prototype int memcmp (const void *b1, const void *b2,
size_t len)

string.h
memcpy

198 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → b1
A pointer to the first buffer of bytes to compare.

→ b2
A pointer to the second buffer of bytes to compare.

→ len
The length of each buffer in bytes.

Returns Returns zero (0) if the two buffers are identical. Otherwise, the
difference between the first two differing bytes is returned.

Compatibility This function is in the C99 specification.

memcpy Function
Purpose Copies a contiguous memory block.

Declared In posix/string.h

Prototype void *memcpy (void *dst, const void *src,
size_t len)

Parameters → dst
A pointer to the destination buffer of bytes.

→ src
A pointer to the source buffer of bytes.

→ len
The length of bytes to copy to the specified buffer.

Returns Returns a pointer to the original value of dst.

Compatibility This function is in the C99 specification.

See Also memmove()

memmove Function
Purpose Copies a contiguous memory block.

Declared In posix/string.h

Prototype void *memmove (void *dst, const void *src,
size_t len)

string.h
memset

Palm OS Protein C/C++ Compiler Language and Library Reference 199

Parameters → dst
A pointer to the destination buffer of bytes.

→ src
A pointer to the source buffer of bytes.

→ len
The length of bytes to copy to the specified buffer.

Returns Returns a pointer to the original value of dst.

Compatibility This function is in the C99 specification.

The Palm OS equivalent of this function is the MemMove() function;
see Exploring Palm OS: Memory, Databases, and Files. The MemMove()
function is provided for backward compatibility.

See Also memcpy()

memset Function
Purpose Copies the value of c (the least significant byte) into each of the first

len bytes of the buffer b.

Declared In posix/string.h

Prototype void *memset (void *b, int c, size_t len)

Parameters → b
The buffer to write to.

→ c
The byte to write.

→ len
The length of bytes to write to the specified buffer.

Returns Returns a pointer to the original value of b.

Compatibility This function is in the C99 specification; however, the parameters
are different.

The Palm OS equivalent of this function is the MemSet() function;
see Exploring Palm OS: Memory, Databases, and Files. The MemSet()
function is provided for backward compatibility. Note that the
MemSet() function reverses the meaning of the last two
parameters.

string.h
strcat

200 Palm OS Protein C/C++ Compiler Language and Library Reference

strcat Function
Purpose Concatenates two strings.

Declared In posix/string.h

Prototype char *strcat (char *s, const char *append)

Parameters → s
The null-terminated string to append to.

→ append
The null-terminated string to append.

Returns Returns a pointer to the concatenated string.

Compatibility This function is in the C99 specification.

This function is internationally safe to use.

The Palm OS equivalent of this function is the StrCat() function;
see Exploring Palm OS: Text and Localization. The StrCat() function
is provided for backward compatibility.

See Also strncat()

strchr Function
Purpose Searches for the first occurrence of a character in a string.

Declared In posix/string.h

Prototype char *strchr (const char *s, int c)

Parameters → b
The string to search.

→ c
The character to search for.

Returns Returns a pointer to the located character, or a NULL pointer if the
character does not appear in the string.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrChr() function; see Exploring Palm OS: Text and Localization.

See Also strrchr()

string.h
strcoll

Palm OS Protein C/C++ Compiler Language and Library Reference 201

strcmp Function
Purpose Compares two strings.

Declared In posix/string.h

Prototype int strcmp (const char *s1, const char *s2)

Parameters → s1
The first string to compare.

→ s2
The second string to compare.

Returns Returns an integer greater than, equal to, or less than zero (0),
accordingly as the string s1 is greater than, equal to, or less than the
string s2.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware and not locale sensitive. The Palm OS equivalent
of this function is the StrCompare() function; see Exploring Palm
OS: Text and Localization.

See Also strncmp()

strcoll Function
Purpose Compares two strings according to locale.

Declared In posix/string.h

Prototype int strcoll (const char *s1, const char *s2)

Parameters → s1
The first string to compare.

→ s2
The second string to compare.

Returns Returns an integer greater than, equal to, or less than zero (0),
accordingly as the string s1 is greater than, equal to, or less than the
string s2.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware and not locale sensitive. The Palm OS equivalent

string.h
strcpy

202 Palm OS Protein C/C++ Compiler Language and Library Reference

of this function is the StrCompare() function; see Exploring Palm
OS: Text and Localization.

strcpy Function
Purpose Copies one string to another.

Declared In posix/string.h

Prototype char *strcpy (char *dst, const char *src)

Parameters → dst
The destination string.

→ src
The source string.

Returns Returns a pointer to the destination string.

Compatibility This function is in the C99 specification.

This function is internationally safe to use.

The Palm OS equivalent of this function is the StrCopy() function;
see Exploring Palm OS: Text and Localization. The StrCopy()
function is provided for backward compatibility.

See Also strncpy()

strcspn Function
Purpose Finds the first sequence of characters in the string s that does not

contain any character specified in charset.

Declared In posix/string.h

Prototype size_t strcspn (const char *s,
const char *charset)

Parameters → s
The string to span.

→ charset
The string of characters to search for.

Returns Returns the length of this first sequence of characters found that do
not match with charset.

string.h
strerror

Palm OS Protein C/C++ Compiler Language and Library Reference 203

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strspn()

strdup Function
Purpose Saves a copy of a string.

Declared In posix/string.h

Prototype char *strdup (const char *str)

Parameters → str
The string to copy.

Returns Returns a pointer to the copied string. Otherwise, a NULL pointer is
returned if insufficient memory is available.

Compatibility This function is in the C99 specification.

This function is internationally safe to use.

strerror Function
Purpose Translates an error number into an error message.

Declared In posix/string.h

Prototype char *strerror (int errnum)

Parameters → errnum
The error number.

Returns Returns a pointer to the language-dependent error message string
associated with the error number.

Compatibility This function is not in the C99 specification.

This function is internationally safe to use.

The Palm OS equivalent of this function is the SysErrString()
function; see Exploring Palm OS: System Management. The
SysErrString() function is provided for backward compatibility.

See Also strerror_r()

string.h
strerror_r

204 Palm OS Protein C/C++ Compiler Language and Library Reference

strerror_r Function
Purpose Re-entrant interface to strerror(), which translates an error

number into an error message.

Declared In posix/string.h

Prototype char *strerror_r (int errnum, char *buf,
size_t buflen)

Parameters → errnum
The error number.

→ buf
The user-provided buffer for the resulting error message.

→ buflen
The length of the buffer. Note that this is one byte less than
the size of the buffer in bytes.

Returns Returns a pointer to the language-dependent error message string
associated with the error number.

Compatibility This function is in the C99 specification.

This function is internationally safe to use.

The Palm OS equivalent of this function is the SysErrString()
function; see Exploring Palm OS: System Management. The
SysErrString() function is provided for backward compatibility.

See Also strerror()

strlcat Function
Purpose Concatenates the null-terminated string src to the end of dst.

Declared In posix/string.h

Prototype size_t strlcat (char *dst, const char *src,
size_t size)

Parameters → dst
The destination string.

→ src
The source string.

string.h
strlcpy

Palm OS Protein C/C++ Compiler Language and Library Reference 205

→ size
The full size of the buffer to copy.

Returns Returns the total length of the string the function tried to create.

Comments Takes the full size of the buffer (not just the length) and guarantees
to null-terminate the result (as long as size is larger than zero (0)
or, as long as there is at least one byte free in dst). Appends at most
size - strlen(dst) - 1 bytes.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrLCat() function; see Exploring Palm OS: Text and Localization.

See Also strlcpy()

strlcpy Function
Purpose Copies up to size - 1 characters from the null-terminated string

src to dst, null-terminating the result.

Declared In posix/string.h

Prototype size_t strlcpy (char *dst, const char *src,
size_t copy)

Parameters → dst
The destination string.

→ src
The source string.

→ size
The full size of the buffer to copy.

Returns Returns the total length of the string the function tried to create.

Comments Takes the full size of the buffer (not just the length) and guarantees
to null-terminate the result (as long as size is larger than zero (0)).

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

string.h
strlen

206 Palm OS Protein C/C++ Compiler Language and Library Reference

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrLCopy() function; see Exploring Palm OS: Text and Localization.

See Also strlcat()

strlen Function
Purpose Computes the length of a string.

Declared In posix/string.h

Prototype size_t strlen (const char *s)

Parameters → s
The string.

Returns Returns the length of the string.

Compatibility This function is in the C99 specification.

This function is internationally safe to use.

The Palm OS equivalent of this function is the StrLen() function;
see Exploring Palm OS: Text and Localization. The StrLen() function
is provided for backward compatibility.

strncat Function
Purpose Concatenates a specified number of characters to a string.

Declared In posix/string.h

Prototype char *strncat (char *s, const char *append,
size_t count)

Parameters → s
The null-terminated string to append to.

→ append
The null-terminated string to append.

→ count
The number of characters to append.

Returns Returns a pointer to the concatenated string.

Compatibility This function is in the C99 specification.

string.h
strncmp

Palm OS Protein C/C++ Compiler Language and Library Reference 207

This function is not internationally safe to use because it is not
multi-byte aware. The result of truncation can be a partial multi-
byte character. The Palm OS equivalent of this function is the
StrNCat() function; see Exploring Palm OS: Text and Localization.
However, implementation details of this function differ from the
C99 implementation. The StrNCat() function does not use the
same meaning for the count parameter, and thus changing
between these two routines requires careful code review.

See Also strcat()

strncmp Function
Purpose Compares a specified number of characters in two strings.

Declared In posix/string.h

Prototype int strncmp (const char *s1, const char *s2,
size_t len)

Parameters → s1
The first string to compare.

→ s2
The second string to compare.

→ len
The number of characters to compare.

Returns Returns an integer greater than, equal to, or less than zero (0),
accordingly as the string s1 is greater than, equal to, or less than the
string s2.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware and not locale sensitive. The Palm OS equivalent
of this function is the StrNCompare() function; see Exploring Palm
OS: Text and Localization.

See Also strcmp()

string.h
strncpy

208 Palm OS Protein C/C++ Compiler Language and Library Reference

strncpy Function
Purpose Copies a specified number of characters in a string.

Declared In posix/string.h

Prototype char *strncpy (char *dst, const char *src,
size_t len)

Parameters → dst
The destination string.

→ src
The source string.

→ len
The number of characters to copy into dst.

Returns Returns a pointer to the destination string.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrNCopy() function; see Exploring Palm OS: Text and Localization.

See Also strcpy()

strpbrk Function
Purpose Looks for the first occurrence of any one of an array of characters in

a string.

Declared In posix/string.h

Prototype char *strpbrk (const char *s,
const char *charset)

Parameters → s
The string to check.

→ charset
The string of characters to search for.

Returns Returns a pointer to the first occurrence of any character in the
string. Otherwise, a NULL pointer is returned if no characters from
charset occur anywhere in the string.

string.h
strsep

Palm OS Protein C/C++ Compiler Language and Library Reference 209

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

strrchr Function
Purpose Searches a string for the last occurrence of a character.

Declared In posix/string.h

Prototype char *strrchr (const char *s, int c)

Parameters → b
The string to search.

→ c
The character to search for.

Returns Returns a pointer to the located character, or a NULL pointer if the
character does not appear in the string.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strchr()

strsep Function
Purpose Locates, in the null-terminated stringp, the first occurrence of any

character in the string delim, and replaces it with a ‘\0’.

Declared In posix/string.h

Prototype char *strsep (char **stringp, const char *delim)

Parameters → stringp
The string to separate.

→ delim
The delimiter character.

Returns Returns a pointer to the original value of the string.

Compatibility This function is not in the C99 specification.

string.h
strspn

210 Palm OS Protein C/C++ Compiler Language and Library Reference

This function is a Palm OS extension (not present in C99 or Unix).

This function is not internationally safe to use because it is not
multi-byte aware.

strspn Function
Purpose Spans the initial part of the null-terminated string s as long as the

characters from s occur in string charset.

Declared In posix/string.h

Prototype size_t strspn (const char *s,
const char *charset)

Parameters → s
The string to span.

→ charset
The string of characters to search for.

Returns Returns the number of characters spanned.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strcspn()

strstr Function
Purpose Searches for a string within another.

Declared In posix/string.h

Prototype char *strstr (const char *big,
const char *little)

Parameters → big
The string to search.

→ little
The string to search for within big.

string.h
strtok_r

Palm OS Protein C/C++ Compiler Language and Library Reference 211

Returns Returns big if little is the empty string. Returns a NULL pointer
if little occurs nowhere in big. Otherwise, returns a pointer to
the first character of the first occurrence of little.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware. The Palm OS equivalent of this function is the
StrStr() function; see Exploring Palm OS: Text and Localization.

strtok Function
Purpose Extracts tokens within a string.

Declared In posix/string.h

Prototype char *strtok (char *str, const char *sep)

Parameters → str
The string to separate.

→ sep
The separator string.

Returns Returns a pointer to the first token in str. Otherwise, a NULL
pointer is returned if nothing but separator characters are found.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strtok_r()

strtok_r Function
Purpose Re-entrant interface to strtok(), which extracts tokens within a

string.

Declared In posix/string.h

Prototype char *strtok_r (char *str, const char *sep,
char **lasts)

Parameters → str
The string to separate.

string.h
strxfrm

212 Palm OS Protein C/C++ Compiler Language and Library Reference

→ sep
The separator string.

→ lasts
A user-provided state that needs to be kept between calls to
scan the same string.

Returns Returns a pointer to the first token in str. Otherwise, a NULL
pointer is returned if nothing but separator characters are found.

Compatibility This function is not in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware.

See Also strtok()

strxfrm Function
Purpose Transforms a string into a format that can be passed to strcmp() to

do locale-sensitive sorting.

Declared In posix/string.h

Prototype size_t strxfrm (char *dst, const char *src,
size_t n)

Parameters → dst
The destination string.

→ src
The source string.

→ n
The number of characters to copy including the null-
terminating character.

Returns Returns the length of the transformed string (not including the
terminating null character).

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it does not yet
use Palm OS support for locale-sensitive sorting.

See Also strcmp()

Palm OS Protein C/C++ Compiler Language and Library Reference 213

25
strings.h
The <strings.h> header defines several functions useful for
manipulating strings.

Functions and Macros

bcopy Function
Purpose Performs a byte string copy, coping len bytes from src to dst. The

two strings may overlap. If len is zero (0), no bytes are copied.

Declared In posix/strings.h

Prototype void bcopy (const void *src, void *dst,
size_t len)

Parameters → src
A pointer to the source buffer of bytes.

→ dst
A pointer to the destination buffer of bytes.

→ len
The length of bytes to copy to the specified buffer.

Compatibility This function is not in the C99 specification.

See Also memcpy()

bzero Function
Purpose Copies zeroes into the first len bytes of the buffer b.

Declared In posix/strings.h

Prototype void bzero (void *b, size_t len)

strings.h
strcasecmp

214 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → b
The buffer that zeroes are copied into.

→ len
The length of bytes of zeroes to copy to the specified buffer.

Compatibility This function is not in the C99 specification.

See Also memset()

strcasecmp Function
Purpose Compares the null-terminated strings s1 and s2 and returns an

integer greater than, equal to, or less than zero (0), accordingly as s1
is lexicographically greater than, equal to, or less than s2 after
translation of each corresponding character to lowercase.

Declared In posix/strings.h

Prototype int strcasecmp (const char *s1, const char *s2)

Parameters → s1
The first string to compare.

→ s2
The second string to compare.

Returns Returns an integer greater than, equal to, or less than zero (0),
accordingly as the string s1 is greater than, equal to, or less than the
string s2.

Compatibility This function is not in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware and not locale sensitive. The Palm OS equivalents
of this function are the StrNCaselessCompare() and
TxtCaselessCompare() functions; see Exploring Palm OS: Text
and Localization.

See Also memcmp(), strncasecmp()

strings.h
strncasecmp

Palm OS Protein C/C++ Compiler Language and Library Reference 215

strncasecmp Function
Purpose Similar to strcasecmp(), except compares at most len characters.

Declared In posix/strings.h

Prototype int strncasecmp (const char *s1, const char *s2,
size_t len)

Parameters → s1
The first string to compare.

→ s2
The second string to compare.

→ len
The number of characters to compare.

Returns Returns an integer greater than, equal to, or less than zero (0),
accordingly as the string s1 is greater than, equal to, or less than the
string s2.

Compatibility This function is not in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware and not locale sensitive. The Palm OS equivalents
of this function are the StrCaselessCompare() and
TxtCaselessCompare() functions; see Exploring Palm OS: Text
and Localization.

See Also strcasecmp(), strncmp()

strings.h
strncasecmp

216 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 217

26
time.h
The <time.h> header defines several functions useful for reading
and converting the current time and date.

Structures and Types

tm Struct
Purpose Defines a structure used to hold the time and date.

Declared In posix/time.h

Prototype struct tm {
 int tm_sec;
 int tm_min;
 int tm_hour;
 int tm_mday;
 int tm_mon;
 int tm_year;
 int tm_wday;
 int tm_yday;
 int tm_isdst;
 long tm_gmtoff;
 char *tm_zone;
}

Fields tm_sec
Seconds after the minute [0-61].

tm_min
Minutes after the hour [0-59].

tm_hour
Hours since midnight [0-23].

tm_mday
Day of the month [1-31].

t ime.h
Functions and Macros

218 Palm OS Protein C/C++ Compiler Language and Library Reference

tm_mon
Months since January [0-11].

tm_year
Years since 1900.

tm_wday
Days since Sunday [0-6].

tm_yday
Days since January 1 [0-365].

tm_isdst
Daylight Saving Time flag.

tm_gmtoff
Offset from UTC in seconds.

tm_zone
Timezone abbreviation.

Functions and Macros

asctime Function
Purpose Converts a tm structure to a string.

Declared In posix/time.h

Prototype char *asctime (const struct tm *tm)

Parameters → tm
A tm structure.

Returns Returns a pointer to a string that represents the day and time.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware, not locale sensitive, and contains unlocalized text.

See Also asctime_r()

t ime.h
ctime

Palm OS Protein C/C++ Compiler Language and Library Reference 219

asctime_r Function
Purpose Re-entrant interface to asctime(), which converts a tm structure

to a string.

Declared In posix/time.h

Prototype char *asctime_r (const struct tm *tm, char *buf)

Parameters → tm
A tm structure.

→ buf
The user-provided buffer area, with a size of at least 26 bytes,
in which the result is stored.

Returns Returns a pointer to a string that represents the day and time.

Compatibility This function is not in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware, not locale sensitive, and contains unlocalized text.

See Also asctime()

clock Function
Purpose A program-relative invocation of the system time.

Declared In posix/time.h

Prototype clock_t clock (void)

Returns Always returns -1, but does not set the global variable errno.

Compatibility This function is in the C99 specification.

ctime Function
Purpose Converts a time_t type to a string.

Declared In posix/time.h

Prototype char *ctime (const time_t *clock)

Parameters → clock
The calendar time.

t ime.h
ctime_r

220 Palm OS Protein C/C++ Compiler Language and Library Reference

Returns Returns a pointer to a string representing the local time of the form:

Thu Nov 24 18:22:48 1986\n\0.

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware, not locale sensitive, and contains unlocalized text.

See Also ctime_r()

ctime_r Function
Purpose Re-entrant interface to ctime(), which converts a time_t type to

a string.

Declared In posix/time.h

Prototype char *ctime_r (const time_t *clock, char *buf)

Parameters → clock
The calendar time.

→ buf
The user-provided buffer area, with a size of at least 26 bytes,
in which the result is stored.

Returns Returns a pointer to a string representing the local time.

Compatibility This function is not in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware, not locale sensitive, and contains unlocalized text.

See Also ctime()

difftime Function
Purpose Computes the difference between two time_t types.

Declared In posix/time.h

Prototype double difftime (time_t time1, time_t time0)

Parameters → time1
The first time to compare.

t ime.h
gmtime_r

Palm OS Protein C/C++ Compiler Language and Library Reference 221

→ time0
The second time to compare.

Returns Returns the difference between two calendar times, (time1 -
time0), expressed in seconds.

Compatibility This function is in the C99 specification.

gmtime Function
Purpose Converts a time_t value to Coordinated Universal Time (UTC),

which is the new name for Greenwich Mean Time.

Declared In posix/time.h

Prototype struct tm *gmtime (const time_t *clock)

Parameters → clock
The calendar time.

Returns Returns a pointer to a tm structure upon successful completion.
Otherwise, a NULL pointer is returned if UTC is not available.

Compatibility This function is in the C99 specification.

See Also gmtime_r()

gmtime_r Function
Purpose Re-entrant interface to gmtime(), which converts a time_t value

to Coordinated Universal Time (UTC), which is the new name for
Greenwich Mean Time.

Declared In posix/time.h

Prototype struct tm *gmtime_r (const time_t *clock,
struct tm *result)

Parameters → clock
The calendar time.

→ result
The user-provided buffer area in which the result is stored.

Returns Returns a pointer to a tm structure upon successful completion.
Otherwise, a NULL pointer is returned if UTC is not available.

t ime.h
localtime

222 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is not in the C99 specification.

See Also gmtime()

localtime Function
Purpose Converts a time_t type to a struct tm type.

Declared In posix/time.h

Prototype struct tm *localtime (const time_t *clock)

Parameters → clock
The calendar time.

Returns Returns a pointer to a tm structure representing the local time.

Comments Corrects for the time zone and any time zone adjustments (such as
Daylight Saving Time in the U.S.A.).

Compatibility This function is in the C99 specification.

See Also localtime_r(), localtime_tz()

localtime_r Function
Purpose Re-entrant interface to localtime(), which converts a time_t

type to a struct tm type.

Declared In posix/time.h

Prototype struct tm *localtime_r (const time_t *clock,
struct tm *result)

Parameters → clock
The calendar time.

→ result
The user-provided buffer area in which the result is stored.

Returns Returns a pointer to a tm structure representing the local time.

Comments This function does not imply initialization of the local time
conversion information.

Compatibility This function is not in the C99 specification.

See Also localtime()

t ime.h
strftime

Palm OS Protein C/C++ Compiler Language and Library Reference 223

mktime Function
Purpose Converts a struct tm type to a time_t type.

Declared In posix/time.h

Prototype time_t mktime (struct tm *tm)

Parameters → tm
A tm structure designating a time in the current time zone.

Returns Returns a string representing a calendar time value.

Compatibility This function is in the C99 specification.

See Also mktime_tz()

strftime Function
Purpose Formats a tm structure to the buffer according to the specified

format.

Declared In posix/time.h

Prototype size_t strftime (char *buf, size_t maxsize,
const char *format, const struct tm *timeptr)

Parameters → buf
The buffer to hold the formatted time.

→ maxsize
The maximum number of characters to be placed into the
buffer.

→ format
The format string, consisting of zero or more conversion
specifications and ordinary characters.

→ timeptr
A tm structure.

Returns Returns the number of characters placed into the buffer (not
including the terminating null character) if the total number of
resulting characters (including the terminating null character) is not
more than maxsize. Otherwise, zero (0) is returned and the
contents of the array are unknown.

Comments A conversion specification consists of a “%” character, possibly
followed by an E or O modifier, and a terminating conversion

t ime.h
strftime

224 Palm OS Protein C/C++ Compiler Language and Library Reference

specifier character that determines the conversion specification’s
behavior. All ordinary characters (including the terminating null
byte) are copied unchanged into the array. If copying takes place
between objects that overlap, the behavior is undefined. No more
than maxsize bytes are placed into the array. Each conversion
specifier is replaced by appropriate characters as described in the
following list. The appropriate characters are determined using the
LC_TIME category of the current locale and by the values of zero or
more members of the broken-down time structure pointed to by
timeptr, as specified in brackets in the description. If any of the
specified values are outside the normal range, the characters stored
are unspecified.

The following conversion specifications are supported:

%a

Replaced by the locale’s abbreviated weekday name. [tm_wday]

%A

Replaced by the locale’s full weekday name. [tm_wday]

%b

Replaced by the locale’s abbreviated month name. [tm_mon]

%B

Replaced by the locale’s full month name. [tm_mon]

%c

Replaced by the locale’s appropriate date and time
representation.

%C

Replaced by the year divided by 100 and truncated to an integer,
as a decimal number [00, 99]. [tm_year]

%d

Replaced by the day of the month as a decimal number [01, 31].
[tm_mday]

%D

Equivalent to %m / %d / %y. [tm_mon, tm_mday, tm_year]

t ime.h
strftime

Palm OS Protein C/C++ Compiler Language and Library Reference 225

%e

Replaced by the day of the month as a decimal number [1,31]; a
single digit is preceded by a space. [tm_mday]

%F

Equivalent to %Y - %m - %d (the ISO 8601:2000 standard date
format). [tm_year, tm_mon, tm_mday]

%g

Replaced by the last 2 digits of the week-based year as a decimal
number [00, 99]. [tm_year, tm_wday, tm_yday]

%G

Replaced by the week-based year as a decimal number (for
example, 1977). [tm_year, tm_wday, tm_yday]

%h

Equivalent to %b. [tm_mon]

%H

Replaced by the hour (24-hour clock) as a decimal number
[00, 23]. [tm_hour]

%I

Replaced by the hour (12-hour clock) as a decimal number
[01, 12]. [tm_hour]

%j

Replaced by the day of the year as a decimal number [001, 366].
[tm_yday]

%m

Replaced by the month as a decimal number [01, 12]. [tm_mon]

%M

Replaced by the minute as a decimal number [00, 59]. [tm_min]

%n

Replaced by a <newline>.

t ime.h
strftime

226 Palm OS Protein C/C++ Compiler Language and Library Reference

%p

Replaced by the locale’s equivalent of either a.m. or p.m.
[tm_hour]

%r

Replaced by the time in a.m. and p.m. notation. In the POSIX
locale, this is equivalent to %I : %M : %S %p. [tm_hour, tm_min,
tm_sec]

%R

Replaced by the time in 24-hour notation (%H : %M). [tm_hour,
tm_min]

%S

Replaced by the second as a decimal number [00, 60]. [tm_sec]

%t

Replaced by a <tab>.

%T

Replaced by the time (%H : %M : %S). [tm_hour, tm_min,
tm_sec]

%u

Replaced by the weekday as a decimal number [1, 7], with 1
representing Monday. [tm_wday]

%U

Replaced by the week number of the year as a decimal number
[00,53]. The first Sunday of January is the first day of week 1;
days in the new year before this are in week 0. [tm_year,
tm_wday, tm_yday]

%V

Replaced by the week number of the year (Monday as the first
day of the week) as a decimal number [01, 53]. If the week
containing January 1 has four or more days in the new year, then
it is considered week 1. Otherwise, it is the last week of the
previous year, and the next week is week 1. Both January 4th and
the first Thursday of January are always in week 1. [tm_year,
tm_wday, tm_yday]

t ime.h
strftime

Palm OS Protein C/C++ Compiler Language and Library Reference 227

%w

Replaced by the weekday as a decimal number [0,6], with 0
representing Sunday. [tm_wday]

%W

Replaced by the week number of the year as a decimal number
[00, 53]. The first Monday of January is the first day of week 1;
days in the new year before this are in week 0. [tm_year,
tm_wday, tm_yday]

%x

Replaced by the locale’s appropriate date representation.

%X

Replaced by the locale’s appropriate time representation.

%y

Replaced by the last two digits of the year as a decimal number
[00,99]. [tm_year]

%Y

Replaced by the year as a decimal number (for example, 1997).
[tm_year]

%z

Replaced by the offset from UTC in the ISO 8601:2000 standard
format (+hhmm or -hhmm), or by no characters if no timezone is
determinable. For example, “-0430” means 4 hours 30 minutes
behind UTC (West of Greenwich). If tm_isdst is zero (0), the
standard time offset is used. If tm_isdst is greater than zero (0),
the daylight saving time offset is used. If tm_isdst is negative,
no characters are returned. [tm_isdst]

%Z

Replaced by the timezone name or abbreviation, or by no bytes if
no timezone information exists. [tm_isdst]

%%

Replaced by %.

If a conversion specification does not correspond to any of the
above, the behavior is undefined.

t ime.h
time

228 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is in the C99 specification.

This function is not internationally safe to use because it is not
multi-byte aware, not locale sensitive, and contains unlocalized text.

time Function
Purpose Returns the current system calendar time.

Declared In posix/time.h

Prototype time_t time (time_t *timer)

Parameters → timer
A time_t value.

Returns Returns the current calendar time.

Compatibility This function is not in the C99 specification.

See Also timegm()

timegm Function
Purpose Converts a struct tm type to a time_t type.

Declared In posix/time.h

Prototype time_t timegm (struct tm *tm)

Parameters → tm
A tm structure designating a time in Coordinated Universal
Time (UTC).

Returns Returns a string representing a calendar time value.

Comments Identical to the mktime() function except that while mktime()
interprets its argument as designating a time in the current time
zone, this function interprets its argument as designating a time in
Coordinated Universal Time (UTC).

Compatibility This function is not in the C99 specification.

See Also mktime(), time()

Palm OS Protein C/C++ Compiler Language and Library Reference 229

27
time.h
The <time.h> header defines several Palm OS specific functions
useful for reading and converting the current time and date.

Constants

TZNAME_MAX
Purpose Defines the maximum length of a time zone identifier string.

Declared In posix/sys/time.h

Constants #define TZNAME_MAX 32

Functions and Macros

getcountrycode Function
Purpose Gets the two-byte country code for the specified time zone.

Declared In posix/sys/time.h

Prototype status_t getcountrycode (const char *tzname,
char *buf, size_t bufsize)

Parameters → tzname
The time zone.

→ buf
The buffer.

→ bufsize
The size of the buffer.

Returns Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

t ime.h
getgmtoffset

230 Palm OS Protein C/C++ Compiler Language and Library Reference

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

getgmtoffset Function
Purpose Gets the difference in seconds between Greenwich Mean Time

(GMT) and local standard time.

Declared In posix/sys/time.h

Prototype int32_t getgmtoffset (const char *tznanme)

Parameters → tzname
The time zone.

Returns Returns the current GMT offset, which takes into account daylight
saving time. This difference is positive for time zones West of
Greenwich and negative for zones East of Greenwich.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

gettimezone Function
Purpose Copies the current system time zone name into buf.

Declared In posix/sys/time.h

Prototype ssize_t gettimezone (char *buf, size_t bufsize)

Parameters → buf
The buffer.

→ bufsize
The size of the buffer.

Returns Returns the number of bytes copied into buf upon successful
completion; otherwise it returns P_ERROR.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also hastimezone(), settimezone()

t ime.h
localtime_tz

Palm OS Protein C/C++ Compiler Language and Library Reference 231

hastimezone Function
Purpose Determines if the system has the specified timezone. That is, if a

timezone database is installed for the specified timezone.

Declared In posix/sys/time.h

Prototype int hastimezone (const char *tzname)

Parameters → tzname
The time zone.

Returns Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also gettimezone(), settimezone()

localtime_tz Function
Purpose Converts the specified UTC time in the time zone to a broken-down

time.

Declared In posix/sys/time.h

Prototype void localtime_tz (const time_t *timer,
const char *tzname, struct tm *result)

Parameters → timer
The calendar time.

→ tzname
The time zone.

← result
A tm structure.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

t ime.h
mktime_tz

232 Palm OS Protein C/C++ Compiler Language and Library Reference

mktime_tz Function
Purpose Converts a specified broken-down time in the time zone to UTC

time. If the tm_isdst member of the tm struct is negative, this
function tries to determine if the specified time zone is currently in
daylight saving time.

Declared In posix/sys/time.h

Prototype time_t mktime_tz (struct tm *tm,
const char *tzname)

Parameters → tm
A tm structure.

→ tzname
The time zone.

Returns Returns the UTC time.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

palm_seconds_to_time_t Function
Purpose Takes as input the number of seconds since 1/1/1904 (old Palm

epoch) and returns the number of seconds since 1/1/1970 (Unix
epoch).

Declared In posix/sys/time.h

Prototype time_t palm_seconds_to_time_t (uint32_t seconds)

Parameters → seconds
The number of seconds.

Returns Returns the number of seconds since 1/1/1970 (Unix epoch).

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also time_t_to_palm_seconds()

t ime.h
system_real_time

Palm OS Protein C/C++ Compiler Language and Library Reference 233

settime Function
Purpose Sets the system time to the specified time.

Declared In posix/sys/time.h

Prototype status_t settime (time_t time)

Parameters → time
The system time.

Returns Returns P_OK upon successful completion.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

settimezone Function
Purpose Sets the system’s time zone.

Declared In posix/sys/time.h

Prototype status_t settimezone (const char *tzname)

Parameters → tzname
The time zone.

Returns Returns P_OK upon successful completion; otherwise it returns
P_ERROR.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also gettimezone(), hastimezone()

system_real_time Function
Purpose Gets the value of the real time clock in nanoseconds.

Declared In posix/sys/time.h

Prototype nsecs_t system_real_time (void)

Returns Returns the value of the real time clock in nanoseconds.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

t ime.h
system_time

234 Palm OS Protein C/C++ Compiler Language and Library Reference

system_time Function
Purpose Gets the value of the run time clock in nanoseconds.

Declared In posix/sys/time.h

Prototype nsecs_t system_time (void)

Returns Returns the value of the run time clock in nanoseconds.

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

time_t_to_palm_seconds Function
Purpose Takes as input the number of seconds since 1/1/1970 (Unix epoch)

and returns the number of seconds since 1/1/1904 (old Palm
epoch).

Declared In posix/sys/time.h

Prototype uint32_t time_t_to_palm_seconds (time_t seconds)

Parameters → seconds
The number of seconds.

Returns Returns the number of seconds since 1/1/1904 (old Palm epoch).

Compatibility This function is not in the C99 specification.

This function is a Palm OS extension (not present in C99 or Unix).

See Also palm_seconds_to_time_t()

Palm OS Protein C/C++ Compiler Language and Library Reference 235

28
uio.h
The <uio.h> header defines two functions useful for vector I/O
operations.

Structures and Types

iovec Struct
Purpose Defines a structure relating to vector I/O information.

Declared In posix/sys/uio.h

Prototype struct iovec {
 void *iov_base;
 size_t iov_len;
}

Fields iov_base
The base address of a memory region for input or output.

iov_len
The size of the memory pointed to by iov_base.

Functions and Macros

readv Function
Purpose Performs the same action as read(), but scatters the input data into

the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

Declared In posix/sys/uio.h

Prototype ssize_t readv (int d, const struct iovec *iov,
size_t iovcnt)

uio.h
writev

236 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → d
The position to start reading from.

→ iov
The array.

→ iovcnt
The buffer.

Returns Returns the number of bytes actually read and placed in the buffer.
Zero (0) is returned if end-of-file is read. Otherwise, -1 is returned
and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also read()

writev Function
Purpose Performs the same action as write(), but gathers the output data

from the iovcnt buffers specified by the members of the iov array:
iov[0], iov[1], ..., iov[iovcnt-1].

Declared In posix/sys/uio.h

Prototype ssize_t writev (int d, const struct iovec *iov,
size_t iovcnt)

Parameters → d
The position to start gathering from.

→ iov
The array.

→ iovcnt
The buffer.

Returns Returns the number of bytes actually written. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also write()

Palm OS Protein C/C++ Compiler Language and Library Reference 237

29
unistd.h
The <unistd.h> header defines several functions useful for
porting code from Unix. These functions are not part of the ANSI C
standard.

Functions and Macros

close Function
Purpose Closes an open file.

Declared In posix/unistd.h

Prototype int close (int d)

Parameters → d
The file descriptor.

Returns Returns zero (0) upon successful completion. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also open()

getopt Function
Purpose Incrementally parses a command line argument list argv and

returns the next known option character. An option character is
known if it has been specified in the string of accepted option
characters, optstring.

Declared In posix/time.h

Prototype int getopt (int argc, char * const argv[],
const char *optstring)

unistd.h
isatty

238 Palm OS Protein C/C++ Compiler Language and Library Reference

Parameters → argc
The argument count variable used for command line
argument count.

→ argv
The command line argument list.

→ optstring
The string of accepted option characters.

Returns Returns the next known option character.

Comments This function does not actually do anything outside of the
BCommand environment.

Compatibility This function is not in the C99 specification.

isatty Function
Purpose Determines if a file descriptor refers to a valid terminal type device.

Declared In posix/unistd.h

Prototype int isatty (int fd)

Parameters → fd
The file descriptor.

Returns Returns 1 if fd is associated with a terminal device. Otherwise, zero
(0) is returned and the global variable errno is set to indicate the
error.

Compatibility This function is not in the C99 specification.

read Function
Purpose Reads from a file stream that has been opened in binary mode for

unformatted input/output.

Declared In posix/unistd.h

Prototype ssize_t read (int d, void *buf, size_t nbytes)

Parameters → d
The file descriptor.

unistd.h
write

Palm OS Protein C/C++ Compiler Language and Library Reference 239

→ buf
The buffer.

→ nbytes
The number of bytes of data to read.

Returns Returns zero (0) upon successful completion. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also write()

write Function
Purpose Writes to a file stream that has been opened in binary mode for

unformatted input/output.

Declared In posix/unistd.h

Prototype ssize_t write (int d, const void *buf,
size_t nbytes)

Parameters → d
The file descriptor.

→ buf
The buffer.

→ nbytes
The number of bytes of data to read.

Returns Returns zero (0) upon successful completion. Otherwise, -1 is
returned and the global variable errno is set to indicate the error.

Compatibility This function is not in the C99 specification.

See Also read()

unistd.h
write

240 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 241

30
wchar.h
The <wchar.h> header is included for compliance purposes only.

None of the C wide-char (wchar_t) functionality is supported in
Palm OS. (In fact, the wchar_t type is not even used by Palm OS
since it can vary in size from 8-bits to 32-bits depending on the
compiler.) For safe manipulation of text regardless of the device’s
character encoding, use the Palm OS String and Text Managers; see
Exploring Palm OS: Text and Localization.

wchar.h

242 Palm OS Protein C/C++ Compiler Language and Library Reference

Palm OS Protein C/C++ Compiler Language and Library Reference 243

Index

Symbols
#define 15
#pragma 17
__align 10
__APGE__ 15
__APOGEE__ 15
__arm 15
__asm 11
__cplusplus 15
__DATE__ 16
__EDG__ 16
__EDG_VERSION__ 16
__embedded_cplusplus 16
__EXCEPTIONS 16
__inline 11
__int64 11
__pack 11
__packed 11
__PALMSOURCE__ 16
__PSI__ 16
__pure 11
__ror32 11
__RTTI 16
__SIGNED_CHARS__ 16
__STDC__ 16
__STDC_HOSTED__ 16
__STDC_IEC_559__ 5
__STDC_IEC_559_COMPLEX__ 5
__STDC_VERSION__ 16
__TIME__ 17
__value_in_regs 11
__weak 12
_BOOL 15
_Complex 5
_Imaginary 5
_PACC_VER 16
_WCHAR_T 17

Numerics
4T architecture 4

A
abs() 71, 181

accept() 134
acos() 71
acosf() 72
acosh() 72
acosl() 72
addrinfo 109
allocate

a block of memory heap 187
space for a group of objects 184

and 65
and_eq 65
ANSI/ISO/IEC 14882:1998 3
ANSI/ISO/IEC 9899:1999 3
ARM-Thumb Shared Library Architecture 4
asctime() 218
asctime_r() 219
ASHLA 4
asin() 73
asinf() 73
asinh() 74
asinl() 74
asm 10
asprintf() 149
assert() 39
assert.h 39
atan() 74
atan2() 75
atan2f() 75
atan2l() 76
atanf() 76
atanh() 77
atanl() 77
atof() 181
atoi() 182
atol() 182
atoll() 183

B
bcopy() 213
bind() 135
bitand 65
bitor 65

244 Palm OS Protein C/C++ Compiler Language and Library Reference

break up the floating-point number x into a
mantissa and exponent 87, 88

bsearch() 183
bzero() 213

C
c_plusplus 16
C99 3
calloc() 184
cbrt() 77
ceil() 78
ceilf() 78
ceill() 78
change the size of an allocated block of heap

memory 190
character set 7
check

the end-of-file status 151
the error status 152

classify an argument value as NaN 87
clear a stream’s end-of-file 150
clearerr() 150
climits.h 24
clock() 219
close

a stream 150
open files 237
the connection to the database 113
the TCP connection 112

close() 237
comments 8
compare

a specified number of characters in two
strings 207

two blocks of memory 197
two null-terminated strings 214
two strings 201
two strings according to locale 201

compl 65
complex.h 24
compute

an approximation to the sine and cosine of any
angle 130

the absolute value of an integer 181
the absolute value of x 71, 83, 84

the arc-cosine of x 71, 72
the arc-sine of x 73, 74
the arc-tangent of x 74, 76, 77
the arc-tangent of y/x 75, 76
the base-10 logarithm of x 94
the cosine of x 79, 80, 81
the cube root of x 77
the difference between two time_t types 220
the exponential of x 81, 82
the floating-point remainder of x/y 85, 86
the hyperbolic cosine of x 80, 81
the hyperbolic sine of x 102, 103
the hyperbolic tangent of x 105, 106
the inverse hyperbolic cosine of x 72
the inverse hyperbolic sine of x 74
the inverse hyperbolic tangent of x 77
the largest integer not greater than x 84, 85
the length of a string 206
the long integer absolute value 186
the long long integer absolute value 187
the natural logarithm of x 93, 95, 96
the nearest 32-bit signed integer not greater

than x 129
the nearest 32-bit signed integer not less than

x 129
the next machine representable number from x

in direction y 98
the non-negative square root of x 103, 104
the remainder r := x - n*y 100
the sine of x 101, 102, 103
the smallest integer not less than x 78
the sqrt(x*x+y*y) 89, 90
the tangent of x 104, 105, 106
the value of exp(x)-1 83
the value of log(1+x) 95
x multiplied by 2 to the power n 92, 93
x raised to power y 98, 99
x*(2**n) by exponent manipulation 100
x’s exponent n 90, 95

concatenate
a specified number of characters to a

string 206
the null-terminated string 204
two strings 200

connect() 135
constants

math 127

Palm OS Protein C/C++ Compiler Language and Library Reference 245

construct an Internet address 58
conversion specifications 224
convert

16-bit values between host byte order and
network byte order 54

16-bit values between network byte order and
host byte order 55

32-bit values between host byte order and
network byte order 54

32-bit values between network byte order and
host byte order 55

a character array to a double value 192
a character array to a long int value 193
a character array to a long long int value 193
a character array to an unsigned long long int

value 195
a character array to an unsigned long

value 194
a character string to a double value 181
a character string to a long long value 183
a character string to a long value 182
a character string to an int value 182
a network format address to presentation

format 60
a presentation format address to network

format 61
a specified broken-down time 232
a struct tm type to a time_t type 223, 228
a time_t type to a string 219
a time_t type to a struct tm type 222
a time_t value to Coordinated Universal Time

(UTC) 221
a tm structure to a string 218
lowercase letters 48
the specified UTC time 231
uppercase letters 47

copy
a contiguous memory block 198
a specified number of characters in a

string 208
characters from the null-terminated string 205
one string to another 202
the current system time zone 230
zeroes into a buffer 213

copysign() 79
cos() 79

cosf() 80
cosh() 80
coshf() 80
coshl() 81
cosl() 81
cpp library 23
ctime() 219
ctime_r() 220
ctype.h 41

D
delete all instances of an environment variable 195
device-specific control functions 63
difftime() 220
div() 184
div_t 179
divide the numerator by the denominator 184, 186
DWARF debugging information 4

E
eabi library 23
endhostent() 112
endnetent() 113
endprotoent() 113
endservent() 113
enter an argument into the environment list 187
erase any input or output buffered 156
errno 49
errno.h 49
ErrTryCatch.h 24
examine the I/O descriptor sets 131
exp() 81
expand an integer constant 147
expf() 82
expl() 82
expm1() 83
extract tokens within a string 211

F
fabs() 83
fabsf() 83
fabsl() 84
fclose() 150

246 Palm OS Protein C/C++ Compiler Language and Library Reference

fcntl() 51
fcntl.h 51
fdopen() 151
fenv.h 24
feof() 151
ferror() 152
fflush() 152
fgetc() 152
fgetln() 153
fgetpos() 153
fgets() 154
fileno() 155
find the first sequence of characters in the

string 202
floor() 84
floorf() 84
floorl() 85
FLT_EVAL 69
flush a stream 152
fmod() 85
fmodf() 86
fmodl() 86
fopen() 155
format a tm structure to the buffer 223
FP_ILOGB0 69
FP_ILOGBNAN 69
FP_INFINITE 69
FP_NAN 69
FP_NORMAL 69
FP_SUBNORMAL 69
FP_ZER0 69
fpclassify() 87
fprintf() 156
fpurge() 156
fputc() 157
fputs() 157
fread() 158
free() 185
freeaddrinfo() 113
freehostent() 114
freopen() 158
frexp() 87
frexpf() 88

frexpl() 88
fscanf() 159
fseek() 160
fseeko() 160
fsetpos() 161
ftell() 161
ftello() 162
fwrite() 162

G
gai_strerror() 114
generate a pseudo-random integer value 189
get

a character from a stream 152, 163
a character from stdin 163
a file position for a stream 153
a line from a stream 153, 154, 164
the current value of an environment

variable 185
the current value of the file position

indicator 161
the difference in seconds 230
the two-byte country code 229

getaddrinfo() 115
getc() 163
getchar() 163
getcountrycode() 229
getenv() 185
getgmtoffset() 230
gethostbyaddr() 116
gethostbyname() 116
gethostbyname2() 117
gethostent() 117
getipnodebyaddr() 117
getipnodebyname() 118
getnameinfo() 119
getnetbyaddr() 120
getnetbyname() 120
getnetent() 120
getopt() 237
getpeername() 136
getprotobyname() 121
getprotobynumber() 121
getprotoent() 121

Palm OS Protein C/C++ Compiler Language and Library Reference 247

gets() 164
getservbyname() 122
getservbyport() 122
getservent() 123
getsockname() 137
getsockopt() 137
gettimezone() 230
getw() 164
global error code variable 49
gmtime() 221
gmtime_r() 221

H
hastimezone() 231
header files

assert.h 39
climits.h 24
complex.h 24
ctype.h 41
errno.h 49
fcntl.h 51
fenv.h 24
in.h 53
inet.h 57
inttypes.h 24
ioctl.h 63
iso646.h 65
limits.h 24
locale.h 67
math.h 69
namespace.h 24
netdb.h 109
PalmMath.h 127
paths.h 24
select.h 131
setjmp.h 24
signal.h 24
socket.h 133
stdarg.h 145
stddef.h 147
stdint.h 24
stdio.h 149
stdlib.h 179
string.h 197
strings.h 213
termios.h 24

time.h 217, 229
uio.h 235
unistd.h 237
wchar.h 241

hostent 110
hstrerror() 123
htonl() 54
htons() 54
HUGE_VAL 69
HUGE_VALF 69
HUGE_VALL 69
hypot() 89
hypotf() 89
hypotl() 90

I
identifiers 9
ilogb() 90
in.h 53
inet.h 57
inet_addr() 57
inet_aton() 57
inet_lnaof() 58
inet_makeaddr() 58
inet_netof() 59
inet_network() 59
inet_ntoa() 60
inet_ntop() 60
inet_pton() 61
INFINITY 69
inplace_realloc() 185
insert or reset an environment variable 191
interpret the specified character string as an

Internet address 57
inttypes.h 24
ioctl() 63
ioctl.h 63
iostream 21
iovec 235
isalnum() 41
isalpha() 42
isatty() 238
isblank() 42

248 Palm OS Protein C/C++ Compiler Language and Library Reference

iscntrl() 43
isdigit() 43
isfinite() 90
isgraph() 44
isinf() 91
islower() 44
isnan() 91
isnormal() 92
ISO 646 65
iso646.h 65
isprint() 45
ispunct() 45
isspace() 46
isupper() 46
isxdigit() 47

K
keywords 10

L
labs() 186
lceilf() 129
ldexp() 92
ldexpf() 92
ldexpl() 93
ldiv() 186
ldiv_t 179
lfloorf() 129
libc 24, 67
libm.a 70
libraries

cpp 23
eabi 23
pacc 23
STLport 23
support 23

limits.h 24
listen() 138
llabs() 187
lldiv_t 180
locale.h 67
localtime() 222
localtime_r() 222

localtime_tz() 231
locate the first occurrence of any character in the

string 209
log() 93
log10() 94
log10f() 94
log10l() 94
log1p() 95
logb() 95
logf() 95
logl() 96
look for the first occurrence of any one of an array

of characters 208

M
malloc() 187
manipulate a file descriptor 51
math constants 127
math.h 69
MATH_ERREXCEPT 69
math_errhandling 69
MATH_ERRNO 69
memchr() 197
memcmp() 197
memcpy() 198
memmove() 198
memset() 199
mktime() 223
mktime_tz() 232
modf() 96
modff() 97
modfl() 97

N
namespace.h 24
NAN 69
netdb.h 109
netent 111
nextafter() 98
nodename-to-address translation 115
not 65
not_eq 65
ntohl() 55

Palm OS Protein C/C++ Compiler Language and Library Reference 249

ntohs() 55

O
offsetof() 147
open

a file 51
and rewind a file 124, 125

open() 51
operators 12
or 65
or_eq 65
output a diagnostic message 39

P
pacc library 23
palm_seconds_to_time_t() 232
PalmMath.h 127
parse a command line argument list 237
paths.h 24
perform

a binary search 183
a byte string copy 213

perror() 165
place a character back in a stream 173
pow() 98
powf() 99
powl() 99
preprocessor directives 15
printf() 165
program-relative invocation of the system

time 219
protoent 111
putc() 166
putchar() 166
putenv() 187
puts() 167
putw() 167

Q
qdiv_t 180
qsort() 188
qsort_r() 188

R
rand() 189
rand_r() 189
random() 190
read

formatted input from a character string 172
formatted input from a stream 159
formatted input from a string 178
formatted input from stdin 168
formatted input from stdout 175
from a file stream 238
objects from the stream 158
the next entry in the database 117
the next line of the file 120, 121, 123

read() 238
readv() 235
realloc() 190
recv() 138
recvfrom() 139
recvmsg() 140
re-entrant interface to

asctime() 219
ctime() 220
gmtime() 221
localtime() 222
qsort() 188
rand() 189
strerror() 204
strtok() 211

release
the dynamically allocated memory 114
the previously allocated memory to heap 185

remainder() 100
request the use of a connected TCP socket 123
reset the file indicator 168
resize the memory block inplace 185
restrictions

on C++ 5
on C99 5

return
a number suitable for use as an Internet

address 57
a number suitable for use as an Internet

network number 59

250 Palm OS Protein C/C++ Compiler Language and Library Reference

an ASCII string representing an Internet
address 60

successive pseudo-random numbers 190
the address of a network host 117
the current system calendar time 228
the local network address part (in host

order) 58
the name of a network host 118
the network number part (in host order) 59
the socket address structures 113
x with its sign changed to y’s 79

rewind() 168
rint() 100
round x to integral value in floating-point

format 100

S
save a copy of a string 203
scalbn() 100
scanf() 168
search

a string for the last occurrence of a
character 209

for a string within another 210
for an occurrence of a byte in a buffer 197
for the first occurrence of a character in a

string 200
for the specified host 116
until a matching network address is found 120
until a matching network name is found 120
until a matching port number is found 122
until a matching protocol name is found 121,

122
until a matching protocol number is found 121

seed
the random number generator used by

rand() 191
the random number generator used by

random() 192
select() 131
select.h 131
send() 141
sendmsg() 141
sendto() 142
separators 15

servent 112
set

a file position for a stream 161
the buffer size and scheme for a stream 170
the buffer size for a stream 169, 170
the file position indicator for a stream 160
the system time 233
the system’s time zone 233

setbuf() 169
setbuffer() 169
setenv() 191
sethostent() 123
setjmp.h 24
setlinebuf() 170
setnetent() 124
setprotoent() 124
setservent() 125
setsockopt() 143
settime() 233
settimezone() 233
setvbuf() 170
shutdown() 143
signal.h 24
signbit() 101
sin() 101
sincosf() 130
sinf() 102
sinh() 102
sinhf() 102
sinhl() 103
sinl() 103
snprintf() 171
sockaddr 133
sockaddr_in 53
socket() 144
socket.h 133
socklen_t 133
sort an array 188
span the initial part of the null-terminated

string 210
sprintf() 172
sqrt() 103
sqrtf() 104
sqrtl() 104

Palm OS Protein C/C++ Compiler Language and Library Reference 251

srand() 191
srandom() 192
sscanf() 172
stdarg.h 145
stddef.h 147
stdint.h 24
stdio.h 149
stdlib.h 179
STLport 21
STLport library 23
strcasecmp() 214
strcat() 200
strchr() 200
strcmp() 201
strcoll() 201
strcpy() 202
strcspn() 202
strdup() 203
strerror() 203
strerror_r() 204
strftime() 223
string.h 197
strings.h 213
strlcat() 204
strlcpy() 205
strlen() 206
strncasecmp() 215
strncat() 206
strncmp() 207
strncpy() 208
strpbrk() 208
strrchr() 209
strsep() 209
strspn() 210
strstr() 210
strtod() 192
strtok() 211
strtok_r() 211
strtol() 193
strtoll() 193
strtoul() 194
strtoull() 195
strxfrm() 212

support library 23
system_real_time() 233
system_time() 234

T
tan() 104
tanf() 105
tanh() 105
tanhf() 106
tanhl() 106
tanl() 106
technical requirements 4
termios.h 24
test

for a NaN (not a number) 91
for a negative sign 101
for a normal value 92
for alphabetic characters 42
for alphanumeric characters 41
for blank-space characters 42
for control characters 43
for decimal-digit characters 43
for finite value 90
for hexadecimal-digit characters 47
for infinity (positive or negative) 91
for lowercase letters 44
for printing characters 44, 45
for punctuation characters 45
for standard white-space characters 46
for uppercase letters 46

the number of seconds since
1/1/1904 232
1/1/1970 234

the value of
the real time clock 233
the run time clock 234

time() 228
time.h 217, 229
time_t_to_palm_seconds() 234
timegm() 228
tm 217
tokens 9
tolower() 47
tools documentation viii
toupper() 48

252 Palm OS Protein C/C++ Compiler Language and Library Reference

transform a string into a format that can be passed
to strcmp() 212

translate
address-to-nodename 119
an error number into an error message 203

TZNAME_MAX 229

U
uio.h 235
ungetc() 173
unistd.h 237
unsetenv() 195

V
va_arg() 145
va_copy() 145
va_end() 146
va_start() 146
vasprintf() 173
vfprintf() 174
vprintf() 175
vscanf() 175
vsnprintf() 176
vsprintf() 177
vsscanf() 178

W
wchar.h 241
wchar_t 241
write

a character to a stream 166
a character to an output stream 157
a character to stdout 166
a dynamically allocated string 149
a line to a stream 157
a string to stdout 167
an error to stderr 165
formatted output 156
formatted output to a character string 171,

172, 176
formatted output to a string 177
formatted output to an output stream 174
formatted output to stdout 165, 175
objects to the stream 162
the specified word to an output stream 167
to a dynamically allocated string 173
to a file stream 239

write() 239
writev() 236

X
xor 65
xor_eq 65

	Palm OS Protein C/C++ Compiler Reference
	Table of Contents
	About This Book
	C/C++ Compiler Language Reference
	Language Overview
	C Technical Requirements
	C++ Technical Requirements
	Limitations
	Restrictions on C99
	Restrictions on C++

	Language Elements
	Lexical Elements
	Character Set
	Comments
	Tokens
	Identifiers
	Keywords
	Constants
	Operators
	Separators

	Preprocessor Directives
	#define
	#pragma

	C/C++ Compiler Library Reference
	STLport/iostream
	Palm OS-Specific Libraries
	The Palm OS Implementation of the Standard C Library (libc)

	Runtime Library Functions
	Supported Functions
	Unsupported Functions

	assert.h
	Functions and Macros
	assert

	ctype.h
	Functions and Macros
	isalnum
	isalpha
	isblank
	iscntrl
	isdigit
	isgraph
	islower
	isprint
	ispunct
	isspace
	isupper
	isxdigit
	tolower
	toupper

	errno.h
	Global Variables
	errno Variable

	fcntl.h
	Functions and Macros
	fcntl
	open

	in.h
	Structures and Types
	sockaddr_in

	Functions and Macros
	htonl
	htons
	ntohl
	ntohs

	inet.h
	Functions and Macros
	inet_addr
	inet_aton
	inet_lnaof
	inet_makeaddr
	inet_netof
	inet_network
	inet_ntoa
	inet_ntop
	inet_pton

	ioctl.h
	Functions and Macros
	ioctl

	iso646.h
	Operators

	locale.h
	math.h
	Functions and Macros
	abs
	acos
	acosf
	acosh
	acosl
	asin
	asinf
	asinh
	asinl
	atan
	atan2
	atan2f
	atan2l
	atanf
	atanh
	atanl
	cbrt
	ceil
	ceilf
	ceill
	copysign
	cos
	cosf
	cosh
	coshf
	coshl
	cosl
	exp
	expf
	expl
	expm1
	fabs
	fabsf
	fabsl
	floor
	floorf
	floorl
	fmod
	fmodf
	fmodl
	fpclassify
	frexp
	frexpf
	frexpl
	hypot
	hypotf
	hypotl
	ilogb
	isfinite
	isinf
	isnan
	isnormal
	ldexp
	ldexpf
	ldexpl
	log
	log10
	log10f
	log10l
	log1p
	logb
	logf
	logl
	modf
	modff
	modfl
	nextafter
	pow
	powf
	powl
	remainder
	rint
	scalbn
	signbit
	sin
	sinf
	sinh
	sinhf
	sinhl
	sinl
	sqrt
	sqrtf
	sqrtl
	tan
	tanf
	tanh
	tanhf
	tanhl
	tanl

	netdb.h
	Structures and Types
	addrinfo
	hostent
	netent
	protoent
	servent

	Functions and Macros
	endhostent
	endnetent
	endprotoent
	endservent
	freeaddrinfo
	freehostent
	gai_strerror
	getaddrinfo
	gethostbyaddr
	gethostbyname
	gethostbyname2
	gethostent
	getipnodebyaddr
	getipnodebyname
	getnameinfo
	getnetbyaddr
	getnetbyname
	getnetent
	getprotobyname
	getprotobynumber
	getprotoent
	getservbyname
	getservbyport
	getservent
	hstrerror
	sethostent
	setnetent
	setprotoent
	setservent

	PalmMath.h
	Constants
	Math Constants

	Functions and Macros
	lceilf
	lfloorf
	sincosf

	select.h
	Functions and Macros
	select

	socket.h
	Structures and Types
	sockaddr
	socklen_t

	Functions and Macros
	accept
	bind
	connect
	getpeername
	getsockname
	getsockopt
	listen
	recv
	recvfrom
	recvmsg
	send
	sendmsg
	sendto
	setsockopt
	shutdown
	socket

	stdarg.h
	Functions and Macros
	va_arg
	va_copy
	va_end
	va_start

	stddef.h
	Functions and Macros
	offsetof

	stdio.h
	Functions and Macros
	asprintf
	clearerr
	fclose
	fdopen
	feof
	ferror
	fflush
	fgetc
	fgetln
	fgetpos
	fgets
	fileno
	fopen
	fprintf
	fpurge
	fputc
	fputs
	fread
	freopen
	fscanf
	fseek
	fseeko
	fsetpos
	ftell
	ftello
	fwrite
	getc
	getchar
	gets
	getw
	perror
	printf
	putc
	putchar
	puts
	putw
	rewind
	scanf
	setbuf
	setbuffer
	setlinebuf
	setvbuf
	snprintf
	sprintf
	sscanf
	ungetc
	vasprintf
	vfprintf
	vprintf
	vscanf
	vsnprintf
	vsprintf
	vsscanf

	stdlib.h
	Structures and Types
	div_t
	ldiv_t
	lldiv_t
	qdiv_t

	Functions and Macros
	abs
	atof
	atoi
	atol
	atoll
	bsearch
	calloc
	div
	free
	getenv
	inplace_realloc
	labs
	ldiv
	llabs
	malloc
	putenv
	qsort
	qsort_r
	rand
	rand_r
	random
	realloc
	setenv
	srand
	srandom
	strtod
	strtol
	strtoll
	strtoul
	strtoull
	unsetenv

	string.h
	Functions and Macros
	memchr
	memcmp
	memcpy
	memmove
	memset
	strcat
	strchr
	strcmp
	strcoll
	strcpy
	strcspn
	strdup
	strerror
	strerror_r
	strlcat
	strlcpy
	strlen
	strncat
	strncmp
	strncpy
	strpbrk
	strrchr
	strsep
	strspn
	strstr
	strtok
	strtok_r
	strxfrm

	strings.h
	Functions and Macros
	bcopy
	bzero
	strcasecmp
	strncasecmp

	time.h
	Structures and Types
	tm

	Functions and Macros
	asctime
	asctime_r
	clock
	ctime
	ctime_r
	difftime
	gmtime
	gmtime_r
	localtime
	localtime_r
	mktime
	strftime
	time
	timegm

	time.h
	Constants
	TZNAME_MAX

	Functions and Macros
	getcountrycode
	getgmtoffset
	gettimezone
	hastimezone
	localtime_tz
	mktime_tz
	palm_seconds_to_time_t
	settime
	settimezone
	system_real_time
	system_time
	time_t_to_palm_seconds

	uio.h
	Structures and Types
	iovec

	Functions and Macros
	readv
	writev

	unistd.h
	Functions and Macros
	close
	getopt
	isatty
	read
	write

	wchar.h

	Index
	Symbols
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

